cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229427 Number of nX7 0..2 arrays with horizontal differences mod 3 never 1, vertical differences mod 3 never -1, rows lexicographically nondecreasing, and columns lexicographically nonincreasing.

Original entry on oeis.org

30, 282, 2187, 13345, 66503, 281016, 1037193, 3420692, 10260128, 28379127, 73192023, 177601008, 408454945, 895812869, 1883191437, 3811219431, 7453126082, 14128822736, 26035706883, 46749593643, 81969420795, 140605855270
Offset: 1

Views

Author

R. H. Hardin Sep 22 2013

Keywords

Comments

Column 7 of A229428

Examples

			Some solutions for n=4
..1..1..0..0..0..0..0....1..1..1..1..0..0..0....1..1..0..0..0..0..0
..1..1..0..0..0..0..0....2..1..1..1..0..0..0....1..1..1..1..0..0..0
..1..1..0..0..0..0..0....2..2..2..1..1..0..0....2..2..1..1..1..1..1
..1..1..0..0..0..0..0....2..2..2..1..1..0..0....2..2..2..2..2..2..1
		

Formula

Empirical: a(n) = (1/660441600)*n^14 + (1/9434880)*n^13 + (1/311850)*n^12 + (283/4989600)*n^11 + (23/34560)*n^10 + (5/896)*n^9 + (55843/1587600)*n^8 + (154153/907200)*n^7 + (4503127/7257600)*n^6 + (1244953/725760)*n^5 + (56059/14400)*n^4 + (1646347/302400)*n^3 + (401116003/50450400)*n^2 + (124079/24024)*n + 5