A229441 Number of n X 4 0..2 arrays with horizontal differences mod 3 never 1, vertical differences mod 3 never -1, and rows and columns lexicographically nondecreasing.
6, 14, 37, 109, 324, 915, 2402, 5843, 13229, 28071, 56234, 107080, 194989, 341334, 576993, 945488, 1506848, 2342300, 3559899, 5301215, 7749202, 11137381, 15760476, 21986649, 30271487, 41173901, 55374104, 73693842, 97119059, 126825184
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..2..2..2....0..0..0..0....0..2..2..2....0..0..2..2....0..0..0..0 ..1..0..0..0....1..1..1..1....1..0..2..2....0..0..2..2....1..1..1..1 ..1..0..0..0....1..1..1..1....2..1..0..2....1..1..0..0....2..2..2..2 ..1..1..1..1....2..2..2..2....2..2..1..0....2..2..1..1....2..2..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 4 of A229445.
Formula
Empirical: a(n) = (1/5760)*n^8 + (1/2016)*n^7 + (1/576)*n^6 + (11/360)*n^5 + (409/5760)*n^4 + (49/288)*n^3 + (41/96)*n^2 + (2771/840)*n + 2.
Conjectures from Colin Barker, Sep 17 2018: (Start)
G.f.: x*(6 - 40*x + 127*x^2 - 224*x^3 + 255*x^4 - 177*x^5 + 77*x^6 - 19*x^7 + 2*x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)