cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229445 T(n,k)=Number of nXk 0..2 arrays with horizontal differences mod 3 never 1, vertical differences mod 3 never -1, and rows and columns lexicographically nondecreasing.

Original entry on oeis.org

3, 4, 5, 5, 7, 8, 6, 10, 13, 12, 7, 14, 22, 25, 17, 8, 19, 37, 53, 47, 23, 9, 25, 60, 109, 128, 84, 30, 10, 32, 93, 212, 324, 293, 142, 38, 11, 40, 138, 387, 753, 915, 625, 228, 47, 12, 49, 197, 665, 1609, 2546, 2402, 1244, 350, 57, 13, 59, 272, 1083, 3184, 6374, 8024
Offset: 1

Views

Author

R. H. Hardin Sep 23 2013

Keywords

Comments

Table starts
..3...4....5....6.....7.....8......9.....10......11......12......13.......14
..5...7...10...14....19....25.....32.....40......49......59......70.......82
..8..13...22...37....60....93....138....197.....272.....365.....478......613
.12..25...53..109...212...387....665...1083....1684....2517....3637.....5105
.17..47..128..324...753..1609...3184...5890...10281...17075...27176....41696
.23..84..293..915..2546..6374..14536..30571...59969..110816..194535...326723
.30.142..625.2402..8024.23610..62205.149031..329106..677706.1314145..2419348
.38.228.1244.5843.23428.81177.247607.676983.1685570.3873314.8307126.16784531

Examples

			Some solutions for n=4 k=4
..0..2..2..2....0..2..2..2....0..0..2..2....0..0..2..2....0..2..2..2
..1..0..0..2....1..0..0..0....0..0..2..2....1..1..0..0....0..2..2..2
..2..1..1..0....2..1..1..1....1..1..0..0....1..1..1..1....0..2..2..2
..2..1..1..1....2..2..2..2....1..1..1..1....2..2..1..1....1..0..0..2
		

Crossrefs

Column 1 is A022856(n+4)
Row 2 is A145018(n+1)

Formula

Empirical for column k:
k=1: a(n) = (1/2)*n^2 + (1/2)*n + 2
k=2: a(n) = (1/24)*n^4 + (1/12)*n^3 - (1/24)*n^2 + (23/12)*n + 2
k=3: [polynomial of degree 6]
k=4: [polynomial of degree 8]
k=5: [polynomial of degree 10]
k=6: [polynomial of degree 12]
k=7: [polynomial of degree 14]
Empirical for row n:
n=1: a(n) = n + 2
n=2: a(n) = (1/2)*n^2 + (1/2)*n + 4
n=3: a(n) = (1/3)*n^3 + (8/3)*n + 5
n=4: a(n) = (1/4)*n^4 - (1/3)*n^3 + (13/4)*n^2 + (11/6)*n + 7
n=5: a(n) = (11/60)*n^5 - (1/2)*n^4 + (15/4)*n^3 - n^2 + (257/30)*n + 6
n=6: [polynomial of degree 6]
n=7: [polynomial of degree 7]