This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229468 #27 Oct 27 2023 22:06:58 %S A229468 1,4,1,15,3,1,50,11,2,1,156,35,10,4,1,460,101,36,14,4,1,1296,298,105, %T A229468 44,16,6,1,3522,798,300,130,56,23,6,1,9255,2154,827,377,174,82,31,9,1, %U A229468 23672,5490,2164,1015,502,243,108,43,10,1,59050,13914,5525,2658,1350,705,343,154,55,13,1 %N A229468 Number T(n,k) of parts of each size k^2 in all partitions of n^2 into squares; triangle T(n,k), 1 <= k <= n, read by rows. %H A229468 Alois P. Heinz, <a href="/A229468/b229468.txt">Rows n = 1..141, flattened</a> (Rows n = 1..21 from Christopher Hunt Gribble) %H A229468 Christopher Hunt Gribble, <a href="/A229468/a229468.cpp.txt">C++ program</a> %F A229468 Sum_{k=1..n} T(n,k) * k^2 = A037444(n) * n^2. %e A229468 For n = 3, the 4 partitions are: %e A229468 Square side 1 2 3 %e A229468 9 0 0 %e A229468 5 1 0 %e A229468 1 2 0 %e A229468 0 0 1 %e A229468 Total 15 3 1 %e A229468 So T(3,1) = 15, T(3,2) = 3, T(3,3) = 1. %e A229468 The triangle begins: %e A229468 .\ k 1 2 3 4 5 6 7 8 9 ... %e A229468 .n %e A229468 .1 1 %e A229468 .2 4 1 %e A229468 .3 15 3 1 %e A229468 .4 50 11 2 1 %e A229468 .5 156 35 10 4 1 %e A229468 .6 460 101 36 14 4 1 %e A229468 .7 1296 298 105 44 16 6 1 %e A229468 .8 3522 798 300 130 56 23 6 1 %e A229468 .9 9255 2154 827 377 174 82 31 9 1 %e A229468 10 23672 5490 2164 1015 502 243 108 43 10 ... %e A229468 11 59050 13914 5525 2658 1350 705 343 154 55 ... %p A229468 b:= proc(n, i) option remember; %p A229468 `if`(n=0 or i=1, 1+n*x, b(n, i-1)+ %p A229468 `if`(i^2>n, 0, (g->g+coeff(g, x, 0)*x^i)(b(n-i^2, i)))) %p A229468 end: %p A229468 T:= n-> (p->seq(coeff(p, x, i), i=1..n))(b(n^2, n)): %p A229468 seq(T(n), n=1..14); # _Alois P. Heinz_, Sep 24 2013 %t A229468 b[n_, i_] := b[n, i] = If[n==0 || i==1, 1+n*x, b[n, i-1] + If[i^2>n, 0, Function[ {g}, g+Coefficient[g, x, 0]*x^i][b[n-i^2, i]]]]; T[n_] := Function[{p}, Table[ Coefficient[p, x, i], {i, 1, n}]][ b[n^2, n]]; Table[T[n], {n, 1, 14}] // Flatten (* _Jean-François Alcover_, Mar 09 2015, after _Alois P. Heinz_ *) %Y A229468 Row sums give: A229239. %Y A229468 Cf. A037444. %K A229468 nonn,tabl %O A229468 1,2 %A A229468 _Christopher Hunt Gribble_, Sep 24 2013