cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229470 Positions of 2 in decimal expansion of 0.1231232331232332333..., whose definition is given below.

Original entry on oeis.org

2, 5, 7, 11, 13, 16, 21, 23, 26, 30, 36, 38, 41, 45, 50, 57, 59, 62, 66, 71, 77, 85, 87, 90, 94, 99, 105, 112, 121, 123, 126, 130, 135, 141, 148, 156, 166, 168, 171, 175, 180, 186, 193, 201, 210, 221, 223, 226, 230, 235, 241, 248, 256, 265, 275, 287, 289, 292, 296, 301, 307, 314, 322, 331, 341, 352, 365, 367, 370, 374, 379, 385
Offset: 1

Views

Author

Jiri Klepl, Sep 24 2013

Keywords

Comments

0.1231232331232332333... = Sum_{k>=0} 10^(-(k + 3)! / (3! * k!)) * (1 + 10 * Sum_{l=2..k+2} 10^(-(l^2 + l) / 2) * ((10^l - 1) / 3 - 10^(l - 1))).

Programs

  • PARI
    a(n)=sum(k=0,n-1,1+k-binomial(round(sqrt(2+2*k)),2)+issquare(8*k+1)*(sqrtint(1+8*k)+1)/2) /* Ralf Stephan, Oct 09 2013 */

Formula

a((n^2+n+2m-2)/2) = (n^3+6n^2+3m^2+11n-3m+6)/6; n+2>=m>=2.
a(n) = Sum_{k=0..n-1} ( 1 + A002262(k) + A010054(k)*(sqrt(1+8*k)+1)/2 ).

Extensions

Formula corrected by Ralf Stephan, Oct 09 2013