This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229496 #12 May 21 2021 16:20:32 %S A229496 17,73,73,313,409,313,601,673,241,769,1033,1489,409,433,3361,1033, %T A229496 1609,601,1321,2113,769,5209,1801,2833,3049,3121,1129,2473,1249,2521, %U A229496 6841,4273,4441,4513,3049,6481,8521,5233,3529,3673,11353,6073,2089,6529,6793,2281,7321 %N A229496 Primes p of the form prime(n+1)^2-prime(n)^2+1. %H A229496 K. D. Bajpai, <a href="/A229496/b229496.txt">Table of n, a(n) for n = 1..10000</a> %e A229496 a(1)=17: prime(2+1)^2-prime(2)^2+1= 17, which is prime. %e A229496 a(6)=313: prime(12+1)^2-prime(12)^2+1= 313, which is prime. %p A229496 KD:= proc() local a,b,c,d; a:=ithprime(n+1)^2-ithprime(n)^2+1;if isprime(a) then RETURN(a): fi;end:seq(KD(),n=1..500); %t A229496 Select[Table[Prime[n + 1]^2 - Prime[n]^2 + 1, {n, 10^3}], PrimeQ[#] &] %t A229496 Select[#[[2]]-#[[1]]+1&/@Partition[Prime[Range[200]]^2,2,1],PrimeQ] (* _Harvey P. Dale_, May 21 2021 *) %o A229496 (PARI) for(n=1,10^3,if(ispseudoprime(k=prime(n+1)^2-prime(n)^2+1),print1(k", "))) %Y A229496 Cf. A176136, A069482. %K A229496 nonn %O A229496 1,1 %A A229496 _K. D. Bajpai_, Sep 25 2013