cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229501 Numbers k such that Sum_{i=1..k} i' == 0 (mod k), where i' is the arithmetic derivative of i.

Original entry on oeis.org

1, 6, 344, 1475, 3816, 5463, 18468, 78894, 515108, 566932, 1600370, 14380856, 27129564, 28669993, 31401775, 39638108, 2245196680, 2878016306, 5890364987, 7838325300, 23168759538, 63226475740, 121869542099
Offset: 1

Views

Author

Paolo P. Lava, Sep 25 2013

Keywords

Comments

Next term > 10^7. - M. F. Hasler, Sep 25 2013
a(21) > 10^10. - Donovan Johnson, Sep 25 2013
a(24) > 10^12. - Giovanni Resta, Mar 13 2014

Examples

			1' + 2' + 3' + 4' + 5' + 6' = 0 + 1 + 1 + 4 + 1 + 5 = 12, and 12 mod 6 = 0.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:= proc(q) local a,n,p; a:=0;
    for n from 1 to q do a:=a+n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);
    if a mod n=0 then print(n); fi; od; end: P(10^6);
  • PARI
    s=0;for(n=1,1e7,(s+=A003415(n))%n||print1(n",")) \\ - M. F. Hasler, Sep 25 2013

Formula

A229501 = { n | A190121(n) = 0 (mod n) }. - M. F. Hasler, Sep 25 2013

Extensions

Double-checked below 10^6 and extended up to 10^7 by M. F. Hasler, Sep 25 2013
a(12)-a(20) from Donovan Johnson, Sep 25 2013
a(21)-a(23) from Giovanni Resta, Mar 13 2014