A229501 Numbers k such that Sum_{i=1..k} i' == 0 (mod k), where i' is the arithmetic derivative of i.
1, 6, 344, 1475, 3816, 5463, 18468, 78894, 515108, 566932, 1600370, 14380856, 27129564, 28669993, 31401775, 39638108, 2245196680, 2878016306, 5890364987, 7838325300, 23168759538, 63226475740, 121869542099
Offset: 1
Examples
1' + 2' + 3' + 4' + 5' + 6' = 0 + 1 + 1 + 4 + 1 + 5 = 12, and 12 mod 6 = 0.
Programs
-
Maple
with(numtheory); P:= proc(q) local a,n,p; a:=0; for n from 1 to q do a:=a+n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); if a mod n=0 then print(n); fi; od; end: P(10^6);
-
PARI
s=0;for(n=1,1e7,(s+=A003415(n))%n||print1(n",")) \\ - M. F. Hasler, Sep 25 2013
Formula
Extensions
Double-checked below 10^6 and extended up to 10^7 by M. F. Hasler, Sep 25 2013
a(12)-a(20) from Donovan Johnson, Sep 25 2013
a(21)-a(23) from Giovanni Resta, Mar 13 2014
Comments