This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229525 #19 Jun 13 2015 00:54:45 %S A229525 11,5,31,11,59,19,95,29,139,41,191,55,251,71,319,89,395,109,479,131, %T A229525 571,155,671,181,779,209,895,239,1019,271,1151,305,1291,341,1439,379, %U A229525 1595,419,1759,461,1931,505,2111,551,2299,599,2495,649,2699,701,2911,755 %N A229525 Sum of coefficients of the transform ax^2 + (4a/k - b)x + 4a/k^2 + 2b/k + c = 0 for a,b,c = 1,-1,-1, k = 1,2,3... %C A229525 The positive/negative roots of ax^2 + bx + c = 0 combine with the negative/positive roots of (ck^2 - bk + c)x^2 +(2ck - b)x + c = 0 to define a point on the hyperbola kxy + x + y = 0. To shift such points (roots) to the hyperbola’s other line, put the coefficients of these equations into the formula Q = ax^2 + (4a/k - b)x + 4a/k^2 + 2b/k + c = 0. For a,b,c = 1,-1,-1 and k = 1,2,3..., the coefficients given by Q are the sequence 1,5,5; 1,3,1; 1,7/3,1/9... Clearing fractions and summing a+b+c gives the sequence. %C A229525 The negative of the n-th term is the n+4th term of the c coefficient sequence A229526. %H A229525 Colin Barker, <a href="/A229525/b229525.txt">Table of n, a(n) for n = 1..1000</a> %H A229525 Russell Walsmith, <a href="/A229526/a229526.pdf">CL-Chemy III: Hyper-Quadratics</a> %H A229525 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,3,0,-3,0,1). %F A229525 ax^2 + (4a/k - b)x + 4a/k^2 + 2b/k + c; a,b,c = 1,-1,-1, k = 1,2,3... n. %F A229525 a(n) = 3*a(n-2)-3*a(n-4)+a(n-6). G.f.: -x*(x^5-x^4-4*x^3-2*x^2+5*x+11) / ((x-1)^3*(x+1)^3). - _Colin Barker_, Nov 02 2014 %F A229525 a(n) = -(-5+3*(-1)^n)*(4+6*n+n^2)/8. - _Colin Barker_, Nov 03 2014 %e A229525 For k = 5, the coefficients are 1, 9/5, -11/25. Clearing fractions, 25, 45, -11 and 25 + 45 -11 = 59 = a[5]. %o A229525 (PARI) Vec(-x*(x^5-x^4-4*x^3-2*x^2+5*x+11)/((x-1)^3*(x+1)^3) + O(x^100)) \\ _Colin Barker_, Nov 02 2014 %Y A229525 The a coefficients are A168077, b coefficients are A171621, c coefficients are A229526. %K A229525 nonn,easy %O A229525 1,1 %A A229525 _Russell Walsmith_, Sep 26 2013 %E A229525 More terms from _Colin Barker_, Nov 02 2014