cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A229529 Number of defective 3-colorings of an n X 3 0..2 array connected horizontally, diagonally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

2, 8, 58, 356, 2038, 11184, 59626, 311260, 1598974, 8110984, 40726290, 202778804, 1002549414, 4926990688, 24088644794, 117243591052, 568394827598, 2745949068600, 13224557927522, 63511978473572, 304253006899190
Offset: 1

Views

Author

R. H. Hardin, Sep 25 2013

Keywords

Examples

			Some solutions for n=4:
..0..1..2....0..1..2....0..1..0....0..1..0....0..1..0....0..1..2....0..1..2
..0..1..2....0..2..0....0..1..0....1..2..0....0..1..0....0..2..0....2..0..2
..2..1..2....0..2..1....0..1..0....0..2..1....1..2..0....0..2..0....1..0..1
..1..0..2....1..2..0....0..2..2....1..2..1....0..2..0....0..2..1....2..0..1
		

Crossrefs

Column 3 of A229534.

Formula

Empirical: a(n) = 10*a(n-1) - 29*a(n-2) + 20*a(n-3) - 4*a(n-4) for n>5.
Empirical g.f.: 2*x*(1 - 6*x + 18*x^2 - 16*x^3 + 4*x^4) / (1 - 5*x + 2*x^2)^2. - Colin Barker, Sep 18 2018

A229530 Number of defective 3-colorings of an n X 4 0..2 array connected horizontally, diagonally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

6, 36, 361, 3064, 24344, 185808, 1379512, 10036352, 71892488, 508702512, 3563926872, 24764330720, 170893859240, 1172387842960, 8002259515128, 54379352988992, 368101566941512, 2483167144168432, 16699758317833368
Offset: 1

Views

Author

R. H. Hardin, Sep 25 2013

Keywords

Examples

			Some solutions for n=4:
..0..1..0..2....0..1..0..2....0..1..2..1....0..1..0..1....0..1..0..2
..0..1..0..1....0..2..0..1....2..1..0..1....0..2..0..2....0..2..0..1
..0..2..0..1....0..1..0..2....2..1..0..2....1..2..1..0....0..1..2..1
..1..1..0..2....0..1..2..1....0..1..2..1....1..2..1..0....2..1..0..1
		

Crossrefs

Column 4 of A229534.

Formula

Empirical: a(n) = 14*a(n-1) - 57*a(n-2) + 56*a(n-3) - 16*a(n-4) for n>5.
Empirical g.f.: x*(6 - 48*x + 199*x^2 - 274*x^3 + 105*x^4) / (1 - 7*x + 4*x^2)^2. - Colin Barker, Sep 18 2018

A229531 Number of defective 3-colorings of an n X 5 0..2 array connected horizontally, diagonally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

16, 112, 1588, 19276, 221096, 2451728, 26566266, 283010776, 2975590424, 30959068528, 319352065652, 3270635802440, 33292532186562, 337120240897408, 3398161294369868, 34116704260522692, 341314436219045264
Offset: 1

Views

Author

R. H. Hardin, Sep 25 2013

Keywords

Comments

Column 5 of A229534.

Examples

			Some solutions for n=4:
  0 1 2 1 0      0 1 2 1 2      0 1 2 1 2      0 1 0 2 0
  0 1 2 0 2      2 1 2 1 2      2 1 0 1 0      2 1 2 1 0
  2 1 2 1 2      2 1 2 1 0      0 1 2 1 2      0 1 0 1 0
  2 0 2 1 2      2 1 2 0 2      2 0 2 1 0      2 1 0 1 0
		

Crossrefs

Cf. A229534.

Formula

Empirical: a(n) = 28*a(n-1) - 286*a(n-2) + 1290*a(n-3) - 2373*a(n-4) + 304*a(n-5) + 3551*a(n-6) - 2846*a(n-7) - 546*a(n-8) + 1308*a(n-9) - 505*a(n-10) + 76*a(n-11) - 4*a(n-12) for n > 13.

A229532 Number of defective 3-colorings of an n X 6 0..2 array connected horizontally, diagonally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

40, 368, 7460, 130854, 2171944, 34811238, 544403948, 8359264560, 126546766896, 1894158617022, 28090954101848, 413405522888606, 6044542909770790, 87888904584082718, 1271780829814090170, 18325726435067557004
Offset: 1

Views

Author

R. H. Hardin, Sep 25 2013

Keywords

Comments

Column 6 of A229534.

Examples

			Some solutions for n=4:
  0 1 0 1 0 1    0 1 0 2 1 2    0 1 2 0 1 0    0 0 1 2 1 2
  2 1 2 1 2 1    0 1 0 2 0 2    0 1 2 0 2 0    1 2 1 2 1 2
  2 0 2 0 2 1    0 1 0 1 0 1    2 1 2 1 2 1    1 2 0 2 1 2
  0 1 2 1 2 1    1 2 0 2 0 1    2 0 2 1 0 0    0 2 0 2 1 0
		

Crossrefs

Cf. A229534.

Formula

Empirical: a(n) = 36*a(n-1) - 436*a(n-2) + 1854*a(n-3) + 340*a(n-4) - 19128*a(n-5) + 23849*a(n-6) + 56184*a(n-7) - 108224*a(n-8) - 40816*a(n-9) + 160400*a(n-10) - 34136*a(n-11) - 83203*a(n-12) + 42628*a(n-13) + 6468*a(n-14) - 6334*a(n-15) + 204*a(n-16) + 240*a(n-17) - 25*a(n-18) for n > 19.

A229533 Number of defective 3-colorings of an n X 7 0..2 array connected horizontally, diagonally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

96, 1152, 33136, 833108, 19965136, 463976296, 10551803060, 236116939092, 5217401278606, 114127296405752, 2475805502937114, 53336234719117660, 1142245246463418470, 24337955479727680972, 516277243352142049170
Offset: 1

Views

Author

R. H. Hardin, Sep 25 2013

Keywords

Comments

Column 7 of A229534.

Examples

			Some solutions for n=3:
  0 1 2 2 0 2 0      0 1 0 1 0 2 1      0 1 0 2 2 1 0
  0 1 0 1 0 2 0      0 1 0 1 0 1 0      0 1 0 1 0 1 2
  2 1 0 2 0 2 0      0 1 0 2 0 1 2      2 1 0 1 0 1 2
		

Crossrefs

Cf. A229534.

Formula

Empirical: a(n) = 82*a(n-1) - 2779*a(n-2) + 50254*a(n-3) - 514677*a(n-4) + 2743554*a(n-5) - 2950648*a(n-6) - 48609034*a(n-7) + 245316224*a(n-8) - 89432156*a(n-9) - 2444502643*a(n-10) + 5704858072*a(n-11) + 7254972423*a(n-12) - 41716035658*a(n-13) + 18035762825*a(n-14) + 132606292618*a(n-15) - 178302990168*a(n-16) - 171928095488*a(n-17) + 491624257303*a(n-18) - 70904009836*a(n-19) - 621985038704*a(n-20) + 477824279660*a(n-21) + 281672875548*a(n-22) - 522707244404*a(n-23) + 119050620101*a(n-24) + 190519380818*a(n-25) - 140300285301*a(n-26) + 10246766686*a(n-27) + 24709126330*a(n-28) - 9478840252*a(n-29) - 368991021*a(n-30) + 964165580*a(n-31) - 172681320*a(n-32) - 20355920*a(n-33) + 9906636*a(n-34) - 719568*a(n-35) - 120720*a(n-36) + 22272*a(n-37) - 1024*a(n-38) for n > 39.

A229535 Number of defective 3-colorings of a 2 X n 0..2 array connected horizontally, diagonally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

0, 4, 8, 36, 112, 368, 1152, 3568, 10880, 32832, 98176, 291392, 859392, 2520832, 7359488, 21397248, 61984768, 178979840, 515303424, 1479746560, 4239208448, 12118487040, 34574761984, 98466394112, 279960846336, 794771341312
Offset: 1

Views

Author

R. H. Hardin, Sep 25 2013

Keywords

Examples

			Some solutions for n=4:
..0..1..2..0....0..1..0..0....0..1..0..2....0..1..0..2....0..1..0..1
..0..1..0..1....2..1..2..1....2..1..2..1....1..2..0..1....1..2..0..1
		

Crossrefs

Row 2 of A229534.

Formula

Empirical: a(n) = 4*a(n-1) - 8*a(n-3) - 4*a(n-4).
Empirical g.f.: 4*x^2*(1 - x)^2 / (1 - 2*x - 2*x^2)^2. - Colin Barker, Sep 18 2018

A229536 Number of defective 3-colorings of a 3 X n 0..2 array connected horizontally, diagonally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

0, 20, 58, 361, 1588, 7460, 33136, 146300, 634976, 2729872, 11628320, 49175856, 206658752, 863838624, 3594073792, 14892589280, 61487645824, 253053701600, 1038460551744, 4250534994848, 17357200322560, 70727788661344
Offset: 1

Views

Author

R. H. Hardin, Sep 25 2013

Keywords

Examples

			Some solutions for n=4:
..0..1..0..1....0..1..0..2....0..1..2..1....0..1..2..1....0..1..2..1
..0..2..0..2....0..2..1..2....0..1..0..1....0..1..2..1....2..0..2..1
..2..1..0..1....0..2..0..2....2..2..0..1....2..0..2..0....2..0..2..1
		

Crossrefs

Row 3 of A229534.

Formula

Empirical: a(n) = 6*a(n-1) - a(n-2) - 28*a(n-3) - 4*a(n-4) + 16*a(n-5) - 4*a(n-6) for n>8.
Empirical g.f.: x^2*(20 - 62*x + 33*x^2 + 40*x^3 - 3*x^4 - 16*x^5 + 4*x^6) / (1 - 3*x - 4*x^2 + 2*x^3)^2. - Colin Barker, Sep 18 2018

A229537 Number of defective 3-colorings of a 4 X n 0..2 array connected horizontally, diagonally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

0, 84, 356, 3064, 19276, 130854, 833108, 5305746, 33122792, 205196216, 1258781344, 7670081250, 46440194380, 279724889174, 1677103031212, 10014905982560, 59591710277588, 353467715910526, 2090642805771012, 12333845570879546
Offset: 1

Views

Author

R. H. Hardin, Sep 25 2013

Keywords

Comments

Row 4 of A229534.

Examples

			Some solutions for n=4:
  0 1 0 1     0 1 0 2     0 1 0 1     0 1 0 1     0 1 0 2
  0 1 0 2     2 1 0 1     0 2 0 2     2 1 0 1     0 1 0 1
  0 2 1 2     0 2 0 1     1 2 1 2     0 1 0 1     2 1 0 2
  1 2 1 0     0 2 0 2     0 2 0 0     2 2 0 2     0 2 0 1
		

Crossrefs

Cf. A229534.

Formula

Empirical: a(n) = 6*a(n-1) + 23*a(n-2) - 102*a(n-3) - 288*a(n-4) + 250*a(n-5) + 787*a(n-6) - 238*a(n-7) - 741*a(n-8) + 124*a(n-9) + 196*a(n-10) - 16*a(n-11) - 16*a(n-12) for n > 14.

A229538 Number of defective 3-colorings of a 5 X n 0..2 array connected horizontally, diagonally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

0, 324, 2038, 24344, 221096, 2171944, 19965136, 184319130, 1664588696, 14941791994, 132720725536, 1171588072850, 10275058180372, 89663150159240, 778803031279908, 6737980364090108, 58088493991210808, 499217935061929964
Offset: 1

Views

Author

R. H. Hardin, Sep 25 2013

Keywords

Comments

Row 5 of A229534.

Examples

			Some solutions for n=4:
  0 1 2 2     0 1 2 1     0 1 0 2     0 1 2 0     0 1 2 1
  0 1 0 1     2 1 0 2     2 1 0 1     2 1 2 0     2 1 0 1
  0 2 0 2     0 1 0 2     2 1 2 0     2 1 2 1     2 1 2 1
  0 1 0 2     0 1 0 2     2 1 2 1     1 0 2 1     2 1 2 1
  0 1 0 1     0 1 0 1     0 1 2 0     2 0 2 1     0 1 0 2
		

Crossrefs

Cf. A229534.

Formula

Empirical: a(n) = 12*a(n-1) + 26*a(n-2) - 566*a(n-3) - 123*a(n-4) + 8804*a(n-5) - 4121*a(n-6) - 59620*a(n-7) + 55115*a(n-8) + 183692*a(n-9) - 256127*a(n-10) - 211910*a(n-11) + 498819*a(n-12) - 48036*a(n-13) - 371692*a(n-14) + 214008*a(n-15) + 43848*a(n-16) - 64656*a(n-17) + 8640*a(n-18) + 5184*a(n-19) - 1296*a(n-20) for n > 22.

A229539 Number of defective 3-colorings of a 6 X n 0..2 array connected horizontally, diagonally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

0, 1188, 11184, 185808, 2451728, 34811238, 463976296, 6218438820, 81495355792, 1062456887518, 13702092455116, 175680546862100, 2237595650683400, 28361247430082330, 357801016917216768, 4496495606303951624
Offset: 1

Views

Author

R. H. Hardin, Sep 25 2013

Keywords

Comments

Row 6 of A229534.

Examples

			Some solutions for n=3:
  0 1 0   0 1 0   0 1 0   0 1 0   0 1 2   0 1 0   0 1 2
  0 1 0   0 1 2   0 1 2   0 2 0   0 1 0   0 1 2   0 1 2
  2 2 0   0 2 0   2 0 2   0 2 0   1 2 0   2 1 0   0 1 0
  0 1 0   0 1 0   2 1 2   2 1 0   0 2 1   2 1 2   0 1 2
  0 1 2   0 1 0   0 1 2   0 1 2   0 2 1   1 0 2   0 1 2
  0 1 0   2 1 0   2 1 2   0 1 0   1 2 0   1 0 2   2 0 2
		

Crossrefs

Cf. A229534.

Formula

Empirical: a(n) = 12*a(n-1) + 182*a(n-2) - 1820*a(n-3) - 15113*a(n-4) + 101664*a(n-5) + 646022*a(n-6) - 3003324*a(n-7) -1 5725808*a(n-8) + 55305760*a(n-9) + 234926070*a(n-10) - 698528578*a(n-11) - 2270736611*a(n-12) + 6320752450*a(n-13) + 14600825558*a(n-14) - 41434331996*a(n-15) - 62768577651*a(n-16) + 196263429930*a(n-17) + 176943063476*a(n-18) - 669462409316*a(n-19) - 305019512324*a(n-20) + 1647405492614*a(n-21) + 230358934675*a(n-22) - 2942270801898*a(n-23) + 243588718325*a(n-24) + 3841770422896*a(n-25) - 923967990222*a(n-26) - 3689384232910*a(n-27) + 1300617284437*a(n-28) + 2614259101122*a(n-29) - 1127033659748*a(n-30) - 1366254718948*a(n-31) + 660843537364*a(n-32) + 524090586634*a(n-33) - 269727615782*a(n-34) - 146010681184*a(n-35) + 76928224259*a(n-36) + 28983533038*a(n-37) - 15160113967*a(n-38) - 3964319226*a(n-39) + 2009807783*a(n-40) + 352152984*a(n-41) -1 70267256*a(n-42) - 18138336*a(n-43) + 8296524*a(n-44) + 408240*a(n-45) - 176400*a(n-46) for n > 48.
Showing 1-10 of 12 results. Next