cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229541 Number T(n,k) of partitions of n^2 into squares with each number of parts k; irregular triangle T(n,k), 1 <= k <= n^2.

This page as a plain text file.
%I A229541 #12 Sep 30 2013 16:57:18
%S A229541 1,1,0,0,1,1,0,1,0,0,1,0,0,1,1,0,0,1,1,0,1,1,0,1,0,0,1,0,0,1,1,1,0,1,
%T A229541 1,1,2,1,1,2,1,0,1,1,0,1,1,0,1,0,0,1,0,0,1,1,0,1,2,1,4,1,1,4,2,1,4,2,
%U A229541 1,2,1,1,2,1,1,2,1,0,1,1,0,1,1,0,1,0,0,1,0,0,1
%N A229541 Number T(n,k) of partitions of n^2 into squares with each number of parts k; irregular triangle T(n,k), 1 <= k <= n^2.
%C A229541 Row sums give A037444.
%H A229541 Christopher Hunt Gribble, <a href="/A229541/b229541.txt">Rows 1..21 flattened</a>
%H A229541 Christopher Hunt Gribble, <a href="/A229541/a229541.cpp.txt">C++ program</a>
%F A229541 It appears that T(n+1,g(n+1):(n+1)^2) = T(n,f(n):n^2) where f(1) = 1, f(2) = 1, f(n) = Sum(floor(n/2)), n >= 3, g(2) = 4, g(3) = 6, g(n) = Sum(floor((n+3)/2)) + 5, n >= 4. In addition, g(n+1) - f(n) = 2n + 1 for all n.
%e A229541 The irregular triangle begins:
%e A229541 \ k  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 ...
%e A229541 n
%e A229541 1    1
%e A229541 2    1  0  0  1
%e A229541 3    1  0  1  0  0  1  0  0  1
%e A229541 4    1  0  0  1  1  0  1  1  0  1  0  0  1  0  0  1
%e A229541 5    1  0  1  1  1  2  1  1  2  1  0  1  1  0  1  1  0  1 ...
%e A229541 6    1  0  1  2  1  4  1  1  4  2  1  4  2  1  2  1  1  2 ...
%e A229541 7    1  0  1  2  2  3  4  5  3  6  6  2  5  5  2  5  4  2 ...
%e A229541 8    1  0  0  1  5  2  7  9  5 11  8  5 12  8  6 12  8  6 ...
%e A229541 9    1  0  3  2  2 10  9  9 16 16 14 17 16 14 19 18 13 20 ...
%e A229541 Length of row n is n^2.
%e A229541 For n = 3, the 4 partitions are:
%e A229541 Square side 1 2 3    Number of Parts
%e A229541             9 0 0           9
%e A229541             5 1 0           6
%e A229541             1 2 0           3
%e A229541             0 0 1           1
%e A229541 As each partition has a different number of parts,
%e A229541 T(3,1) = 1, T(3,3) = 1, T(3,6) = 1, T(3,9) = 1.
%Y A229541 Cf. A037444.
%K A229541 nonn,tabf
%O A229541 1,37
%A A229541 _Christopher Hunt Gribble_, Sep 25 2013