A229545 Numbers n such that n + (sum of digits of n) is a palindrome.
0, 1, 2, 3, 4, 10, 20, 30, 40, 50, 60, 70, 80, 90, 91, 96, 100, 105, 124, 129, 143, 148, 162, 167, 181, 191, 196, 200, 205, 224, 229, 243, 248, 262, 267, 281, 291, 296, 300, 305, 324, 329, 343, 348, 362, 367, 381, 391, 396, 400, 405, 424, 429, 443, 448, 462
Offset: 1
Examples
196 + (1+9+6) = 212 (a palindrome). So, 196 is in this sequence.
Links
- Lars Blomberg, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A062028.
Programs
-
Mathematica
palQ[n_] := Block[{d = IntegerDigits@ n}, d == Reverse@ d]; Select[Range[0, 462], palQ[# + Plus @@ IntegerDigits@ #] &] (* Michael De Vlieger, Apr 12 2015 *)
-
PARI
for(n=0,10^3,D=digits(n+sumdigits(n));if(Vecrev(D)==D,print1(n,", "))) \\ Derek Orr, Mar 22 2015
-
Python
def ispal(n): r = '' for i in str(n): r = i + r return n == int(r) def DS(n): s = 0 for i in str(n): s += int(i) return s {print(n,end=', ') for n in range(10**3) if ispal(n+DS(n))} # Simplified by Derek Orr, Mar 22 2015
Comments