This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229547 #22 Jun 10 2020 08:53:55 %S A229547 0,1,2,3,4,5,6,7,8,9,29,34,46,57,61,78,82,93,101,129,143,187,202,218, %T A229547 226,244,247,252,269,294,297,303,319,336,348,357,361,364,386,404,412, %U A229547 419,437,453,462,488,505,514,519,524,534,539,544,554,564,574,584,594,597,606,613,615,617,619,625,635,638,645,655,663 %N A229547 Numbers n such that n - product_of_digits(n) is a palindrome. %H A229547 Michael De Vlieger, <a href="/A229547/b229547.txt">Table of n, a(n) for n = 1..10000</a> %e A229547 143 - (1*4*3) = 131 (a palindrome). So, 143 is a member of the sequence. %t A229547 f[n_] := Block[{d = n - Times @@ IntegerDigits@ n}, d == FromDigits@ Reverse[IntegerDigits@ d]]; Select[Range[0, 1000], f] (* _Michael De Vlieger_, Mar 12 2015 *) %o A229547 (Python) %o A229547 def rev(n): %o A229547 return int(''.join(reversed(str(n)))) %o A229547 def DP(n): %o A229547 p = 1 %o A229547 for i in str(n): %o A229547 p *= int(i) %o A229547 return p %o A229547 {print(n, end=', ') for n in range(10**3) if n-DP(n)==rev(n-DP(n))} %o A229547 # Simplified by _Derek Orr_, Mar 12 2015 %o A229547 (PARI) for(n=0,10^3,d=digits(n);p=prod(i=1,#d,d[i]);if(Vecrev(digits(n-p))==digits(n-p),print1(n,", "))) \\ _Derek Orr_, Mar 12 2015 %Y A229547 Cf. A070565. %K A229547 nonn,base,easy %O A229547 1,3 %A A229547 _Derek Orr_, Sep 26 2013 %E A229547 More terms from _Derek Orr_, Mar 12 2015