This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229556 #26 Jun 13 2022 03:03:30 %S A229556 1,1,1,1,2,1,1,3,3,1,1,4,11,5,1,1,5,25,73,8,1,1,6,137,2221,749,13,1,1, %T A229556 7,49,353777,1964654,12657,21,1,1,8,363,19595573,786674809783, %U A229556 14862065179,343693,34,1,1,9,761,239046803,17003676861538314284,13379715149864207035877,35955580499839 %N A229556 Array read by antidiagonals. Rows are the numerators of consecutive harmonic transforms starting with a first row 1, 1, 1, .... %C A229556 The "harmonic transform" of a sequence of positive numbers a(i) is the sequence h(n) of the partial sums of their reciprocals: h(n) = Sum_{i=1..n} 1/a(i). %e A229556 Table begins %e A229556 1, 1, 1, 1, ... %e A229556 1, 2, 3, 4, ... %e A229556 1, 3, 11, 25, ... %e A229556 1, 5, 73, 2221, ... %e A229556 1, 8, 749, 1964654, ... %e A229556 which are the numerators of %e A229556 1, 1, 1, 1, 1, ... %e A229556 1, 2, 3, 4, 5, ... %e A229556 1, 3/2, 11/6, 25/12, 137/60, ... %e A229556 1, 5/3, 73/33, 2221/825, 353777/113025, ... %e A229556 1, 8/5, 749/365, 1964654/810665, 786674809783/286794631705, ... %p A229556 A229556A := proc(n,k) %p A229556 option remember; %p A229556 if n = 1 then %p A229556 1; %p A229556 else %p A229556 add( 1/procname(n-1,c),c=1..k) ; %p A229556 end if; %p A229556 end proc: %p A229556 A229556 := proc(n,k) %p A229556 numer(A229556A(n,k)) ; %p A229556 end proc: %p A229556 for d from 2 to 12 do %p A229556 for k from d-1 to 1 by -1 do %p A229556 printf("%d,",A229556(d-k,k)) ; %p A229556 end do: %p A229556 end do: %Y A229556 Cf. A229557 (denominators). %Y A229556 Rows 1-4 are A000012(n), A000027(n), A001008(n), A096987(n+1). %Y A229556 Columns 1-2 are A000012(n), A000045(n+2). %Y A229556 Column 3 gives A350834. %K A229556 nonn,tabl,frac %O A229556 1,5 %A A229556 _Franz Vrabec_, Sep 26 2013