This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229559 #12 Dec 19 2013 14:13:58 %S A229559 1,1,2,8,46,340,3080,33020,408760,5737600,90041480,1562155760, %T A229559 29688699040,613378208080,13687826477600,328103392918400, %U A229559 8407745335871200,229363476365320000,6636554484183747200,203007064284501963200,6545704564601880726400,221887453210925123353600 %N A229559 E.g.f. A(x) satisfies: A'(x) = A(x) - A(x)^2 + A(x)^3. %H A229559 Vaclav Kotesovec, <a href="/A229559/b229559.txt">Table of n, a(n) for n = 0..150</a> %F A229559 E.g.f. A(x) satisfies: A(x) = exp(x + Integral A(x)^2 - A(x) dx). %F A229559 a(n) ~ n^n * 3^(3*n/2+3/4) / (exp(n) * Pi^(n+1/2)). - _Vaclav Kotesovec_, Dec 19 2013 %e A229559 E.g.f.: A(x) = 1 + x + 2*x^2/2! + 8*x^3/3! + 46*x^4/4! + 340*x^5/5! +... %e A229559 where A(x)^2 = 1 + 2*x + 6*x^2/2! + 28*x^3/3! + 180*x^4/4! + 1460*x^5/5! +... %e A229559 also, A(x)^3 = 1 + 3*x + 12*x^2/2! + 66*x^3/3! + 474*x^4/4! + 4200*x^5/5! +... %e A229559 and log(A(x)) = x + x^2/2! + 4*x^3/3! + 20*x^4/4! + 134*x^5/5! + 1120*x^6/6! +... %o A229559 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+intformal(A-A^2+A^3+x*O(x^n))); n!*polcoeff(A, n)} %o A229559 for(n=0, 30, print1(a(n), ", ")) %Y A229559 Cf. A124212. %K A229559 nonn %O A229559 0,3 %A A229559 _Paul D. Hanna_, Dec 18 2013