cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229606 T(n,k) = number of defective 3-colorings of an n X k 0..2 array connected horizontally and vertically with exactly two mistakes, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

0, 0, 0, 1, 6, 1, 3, 39, 39, 3, 12, 202, 396, 202, 12, 40, 925, 3040, 3040, 925, 40, 120, 3924, 20714, 35182, 20714, 3924, 120, 336, 15795, 131345, 362100, 362100, 131345, 15795, 336, 896, 61182, 792929, 3476928, 5655616, 3476928, 792929, 61182, 896
Offset: 1

Views

Author

R. H. Hardin, Sep 26 2013

Keywords

Comments

Table starts
...0.....0.......1.........3..........12...........40............120
...0.....6......39.......202.........925.........3924..........15795
...1....39.....396......3040.......20714.......131345.........792929
...3...202....3040.....35182......362100......3476928.......31848813
..12...925...20714....362100.....5655616.....82613904.....1153135492
..40..3924..131345...3476928....82613904...1840258874....39229935270
.120.15795..792929..31848813..1153135492..39229935270..1279020266434
.336.61182.4618048.281845934.15568071652.809714005005.40413033646242

Examples

			Some solutions for n=3, k=4:
  0 1 1 2     0 1 0 1     0 1 2 1     0 1 2 1     0 1 2 0
  2 0 0 1     1 2 1 2     1 2 1 1     2 0 1 2     1 0 2 1
  0 2 1 2     0 2 0 0     0 1 0 2     0 0 2 0     1 2 0 2
		

Crossrefs

Column 1 is A052482(n-2).

Formula

Empirical for column k:
k=1: a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3) for n > 6.
k=2: a(n) = 9*a(n-1) - 27*a(n-2) + 27*a(n-3) for n > 5.
k=3: a(n) = 15*a(n-1) - 81*a(n-2) + 185*a(n-3) - 162*a(n-4) + 60*a(n-5) - 8*a(n-6) for n > 7.
k=4: [order 9] for n > 11.
k=5: [order 16] for n > 17.
k=6: [order 21] for n > 23.
k=7: [order 46] for n > 47.