This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229610 #14 Aug 17 2017 22:36:37 %S A229610 2,7,3,23,11,5,71,37,17,13,223,113,53,41,19,673,347,163,127,59,29, %T A229610 2027,1049,491,383,179,89,31,6089,3163,1481,1151,541,269,97,43,18269, %U A229610 9491,4447,3457,1627,809,293,131,47,54829,28477,13367,10391,4889,2437,881 %N A229610 Array: each row starts with the least prime not in a previous row, and each prime p in a row is followed by the least prime > 3*p. %C A229610 Conjectures: (row 1) = A076656, (column 1) = A164958, and for each row r(k), the limit of r(k)/3^k exists. For rows 1 to 4, the respective limits are 0.928655..., 1.447047..., 2.038260..., 4.753271... . %e A229610 Northwest corner: %e A229610 2, 7, 23, 71, 223, 673, ... %e A229610 3, 11, 37, 113, 347, 1049, ... %e A229610 5, 17, 53, 163, 491, 1481, ... %e A229610 13, 41, 127, 383, 1151, 3457, ... %e A229610 19, 59, 179, 541, 1627, 4889, ... %e A229610 29, 89, 269, 809, 2437, 7331, ... %t A229610 seqL = 14; arr2[1] = {2}; Do[AppendTo[arr2[1], NextPrime[3*Last[arr2[1]]]], {seqL}]; Do[tmp = Union[Flatten[Map[arr2, Range[z]]]]; arr2[z] = {Prime[NestWhile[# + 1 &, 1, PrimePi[tmp[[#]]] - # == 0 &]]}; Do[AppendTo[arr2[z], NextPrime[3*Last[arr2[z]]]], {seqL}], {z, 2, 12}]; m = Map[arr2, Range[12]]; m // TableForm %t A229610 t = Table[m[[n - k + 1]][[k]], {n, 12}, {k, n, 1, -1}] // Flatten (* _Peter J. C. Moses_, Sep 26 2013 *) %Y A229610 Cf. A076656, A164958, A229607, A229608, A229609. %K A229610 nonn,tabl %O A229610 1,1 %A A229610 _Clark Kimberling_, Sep 26 2013 %E A229610 Incorrect comment deleted by _Peter Munn_, Aug 15 2017