This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229629 #26 Nov 21 2021 13:36:01 %S A229629 1,6,888,1808,2138,65246,268105 %N A229629 Numbers k such that k is in the middle of decimal expansion of k^k. %C A229629 a(6) is greater than 50000. %C A229629 a(8) > 600000. - _Giovanni Resta_, Oct 08 2013 %e A229629 6 is in the sequence because 6^6 = 46656, which includes a 6 in the middle. %e A229629 11 is not in the sequence, because even though the substring 11 appears twice in 11^11 = 285311670611, neither occurrence is precisely in the middle. %t A229629 Do[a = IntegerDigits[n^n]; b = Length[a]; c = IntegerLength[n]; If[EvenQ[b - c] && FromDigits[Take[a, {(b - c)/2 + 1, (b + c)/2}]] == n, Print[n]], {n, 50000}] %o A229629 (PARI) is(n)=my(d=digits(n),D=digits(n^n)); if((#d+#D)%2, return(0)); for(i=1,#d, if(d[i]!=D[#D/2-#d/2+i], return(0))); 1 \\ _Charles R Greathouse IV_, Jul 30 2016 %o A229629 (Python) %o A229629 from itertools import islice %o A229629 def A229629(): # generator of terms %o A229629 n = 1 %o A229629 while True: %o A229629 s, sn = str(n**n), str(n) %o A229629 l, ln = len(s), len(sn) %o A229629 if (ln-l) % 2 == 0 and s[l//2-ln//2:l//2+(ln+1)//2] == sn: yield n %o A229629 n += 1 %o A229629 A229629_list = list(islice(A229629(),5)) # _Chai Wah Wu_, Nov 21 2021 %Y A229629 Cf. A033147, A049329, A131495. %K A229629 nonn,base,nice,more %O A229629 1,2 %A A229629 _Farideh Firoozbakht_, Oct 04 2013 %E A229629 a(6)-a(7) from _Giovanni Resta_, Oct 08 2013