cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A229632 Number of defective 3-colorings of an nX3 0..2 array connected horizontally, diagonally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

1, 40, 244, 1496, 8800, 50084, 277996, 1513104, 8106632, 42869740, 224232436, 1161920760, 5972173872, 30479422388, 154582269500, 779632820512, 3912450838808, 19545592617532, 97246103407556, 482032538140680
Offset: 1

Views

Author

R. H. Hardin, Sep 27 2013

Keywords

Comments

Column 3 of A229637

Examples

			Some solutions for n=3
..0..1..1....0..1..0....0..0..1....0..1..2....0..0..1....0..1..0....0..1..1
..2..1..0....0..2..0....1..2..0....2..1..0....2..1..2....0..1..0....0..2..0
..0..1..0....2..1..2....0..2..1....0..1..1....0..1..2....1..2..2....0..1..2
		

Formula

Empirical: a(n) = 15*a(n-1) -81*a(n-2) +185*a(n-3) -162*a(n-4) +60*a(n-5) -8*a(n-6) for n>7.
Empirical: g.f. x -4*x^2*(2*x-5)*(12*x^4-45*x^3+47*x^2-17*x+2) / (2*x^2-5*x+1)^3. - R. J. Mathar, Sep 29 2013

A229633 Number of defective 3-colorings of an n X 4 0..2 array connected horizontally, diagonally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

3, 122, 1109, 10227, 89331, 747299, 6049298, 47723226, 368769958, 2801445986, 20980532622, 155235487082, 1136689596246, 8248224017298, 59378458285438, 424468785559258, 3015393888558342, 21301249097825858, 149716107860461294
Offset: 1

Views

Author

R. H. Hardin, Sep 27 2013

Keywords

Examples

			Some solutions for n=3:
..0..1..2..0....0..1..0..1....0..1..2..0....0..1..1..0....0..0..1..2
..0..1..2..0....2..1..0..2....2..0..2..0....0..1..2..0....2..0..1..2
..2..1..1..0....0..1..2..2....1..0..1..1....0..1..2..1....2..0..1..2
		

Crossrefs

Column 4 of A229637.

Formula

Empirical: a(n) = 21*a(n-1) - 159*a(n-2) + 511*a(n-3) - 636*a(n-4) + 336*a(n-5) - 64*a(n-6) for n>9.
Empirical g.f.: x*(3 + 59*x - 976*x^2 + 4803*x^3 - 9539*x^4 + 7326*x^5 - 1825*x^6 - 76*x^7 + 25*x^8) / (1 - 7*x + 4*x^2)^3. - Colin Barker, Sep 20 2018

A229634 Number of defective 3-colorings of an n X 5 0..2 array connected horizontally, diagonally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

12, 488, 6031, 77620, 960325, 11485716, 133784624, 1525870912, 17108056051, 189113977298, 2065634425127, 22332806237194, 239326746885334, 2544956244990312, 26878587507519977, 282161860575964390
Offset: 1

Views

Author

R. H. Hardin, Sep 27 2013

Keywords

Comments

Column 5 of A229637.

Examples

			Some solutions for n=3:
  0 1 2 2 0      0 1 0 1 0      0 1 2 1 0      0 1 2 0 2
  0 1 2 1 0      2 1 2 1 0      0 1 2 0 2      0 1 0 1 0
  0 1 2 1 2      2 0 2 0 0      2 0 2 0 2      0 2 0 1 0
		

Crossrefs

Cf. A229637.

Formula

Empirical: a(n) = 42*a(n-1) - 723*a(n-2) + 6569*a(n-3) - 33687*a(n-4) + 94839*a(n-5) - 116010*a(n-6) - 55215*a(n-7) + 305043*a(n-8) - 230994*a(n-9) - 118011*a(n-10) + 243513*a(n-11) - 84933*a(n-12) - 40719*a(n-13) + 42804*a(n-14) - 14887*a(n-15) + 2598*a(n-16) - 228*a(n-17) + 8*a(n-18) for n > 20.

A229635 Number of defective 3-colorings of an n X 6 0..2 array connected horizontally, diagonally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

40, 1608, 28448, 535671, 9722206, 170405645, 2902520386, 48303362606, 788657935296, 12673198849045, 200926746561814, 3149086238797127, 48865266229013882, 751678393470169836, 11474405764402402524
Offset: 1

Views

Author

R. H. Hardin, Sep 27 2013

Keywords

Comments

Column 6 of A229637.

Examples

			Some solutions for n=3:
  0 1 0 2 0 2    0 1 0 2 0 1    0 1 0 1 2 1    0 1 0 1 0 0
  1 2 0 2 1 2    2 1 0 1 0 2    1 2 0 1 0 2    2 1 2 1 2 0
  1 2 0 2 0 0    1 2 0 1 0 2    0 2 0 1 0 1    2 0 2 0 2 0
		

Formula

Empirical: a(n) = 54*a(n-1) - 1140*a(n-2) + 11637*a(n-3) - 54252*a(n-4) + 33192*a(n-5) + 658756*a(n-6) - 1921212*a(n-7) - 1566516*a(n-8) + 12850374*a(n-9) - 7108644*a(n-10) - 35018232*a(n-11) + 43506046*a(n-12) + 38500440*a(n-13) - 85687812*a(n-14) - 200796*a(n-15) + 75241308*a(n-16) - 31685592*a(n-17) - 25769200*a(n-18) + 20878068*a(n-19) + 213348*a(n-20) - 3655770*a(n-21) + 608916*a(n-22) + 230904*a(n-23) - 61761*a(n-24) - 2790*a(n-25) + 1800*a(n-26) - 125*a(n-27) for n > 30.

A229636 Number of defective 3-colorings of an n X 7 0..2 array connected horizontally, diagonally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

120, 5392, 136778, 3723370, 98015235, 2495874984, 61836040854, 1498317588826, 35650331594818, 835527599342816, 19334282699326025, 442561024351155220, 10035487974561746994, 225705889177614527760, 5039777091823275662663
Offset: 1

Views

Author

R. H. Hardin, Sep 27 2013

Keywords

Comments

Column 7 of A229637.

Examples

			Some solutions for n=3:
  0 1 2 0 2 1 0      0 1 2 1 0 1 2      0 1 0 1 2 1 2
  2 1 0 1 0 1 0      0 1 0 1 2 1 0      2 1 0 1 2 1 0
  2 1 2 1 0 1 0      0 2 0 1 2 1 1      1 0 2 1 2 1 0
		

Formula

Empirical recurrence of order 57 (see link above).

A229638 Number of defective 3-colorings of a 2 X n 0..2 array connected horizontally, diagonally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

0, 6, 40, 122, 488, 1608, 5392, 17368, 55232, 172896, 535296, 1641376, 4992896, 15083648, 45297408, 135323008, 402405376, 1191699968, 3516119040, 10339711488, 30313351168, 88624646144, 258445856768, 751910639616, 2182836600832
Offset: 1

Views

Author

R. H. Hardin, Sep 27 2013

Keywords

Examples

			Some solutions for n=3:
..0..1..2....0..1..2....0..1..2....0..1..2....0..0..0....0..0..1....0..1..0
..0..1..1....2..0..0....2..0..1....1..1..2....1..2..1....1..0..1....1..1..2
		

Crossrefs

Row 2 of A229637.

Formula

Empirical: a(n) = 6*a(n-1) - 6*a(n-2) - 16*a(n-3) + 12*a(n-4) + 24*a(n-5) + 8*a(n-6).
Empirical g.f.: 2*x^2*(1 - x)*(3 + 5*x - 36*x^2 + 10*x^3) / (1 - 2*x - 2*x^2)^3. - Colin Barker, Sep 20 2018

A229639 Number of defective 3-colorings of a 3 X n 0..2 array connected horizontally, diagonally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

0, 39, 244, 1109, 6031, 28448, 136778, 633328, 2905016, 13118016, 58633648, 259523840, 1139461984, 4967050352, 21516000592, 92679568016, 397212173264, 1694694809008, 7200709256752, 30481238674128, 128588345884944
Offset: 1

Views

Author

R. H. Hardin, Sep 27 2013

Keywords

Comments

Row 3 of A229637.

Examples

			Some solutions for n=3:
  0 1 1   0 0 1   0 1 2   0 1 0   0 1 0   0 1 0   0 1 2
  2 1 0   1 2 1   0 1 0   1 2 1   2 1 0   2 1 0   0 1 2
  2 1 0   1 0 0   1 2 1   1 0 1   1 1 0   1 2 0   1 0 2
		

Formula

Empirical: a(n) = 9*a(n-1) - 15*a(n-2) - 51*a(n-3) + 96*a(n-4) + 138*a(n-5) - 92*a(n-6) - 60*a(n-7) +4 8*a(n-8) - 8*a(n-9) for n > 12.

A229640 Number of defective 3-colorings of a 4 X n 0..2 array connected horizontally, diagonally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

0, 202, 1496, 10227, 77620, 535671, 3723370, 25022190, 166505166, 1090285513, 7066637900, 45333775056, 288422981684, 1821192582307, 11424271291526, 71241698297248, 441922120307156, 2728236364222397, 16770150954151850
Offset: 1

Views

Author

R. H. Hardin, Sep 27 2013

Keywords

Comments

Row 4 of A229637.

Examples

			Some solutions for n=3:
  0 1 0   0 1 1   0 0 1   0 1 1   0 0 1   0 1 1   0 1 0
  1 2 2   0 2 1   2 0 1   1 2 0   2 0 2   2 0 2   0 2 2
  1 0 1   0 2 1   2 0 2   0 2 1   2 0 2   2 0 1   1 2 1
  1 0 2   1 2 1   1 0 1   0 2 1   1 0 1   2 0 2   1 2 1
		

Formula

Empirical: a(n) = 9*a(n-1) + 21*a(n-2) - 270*a(n-3) - 357*a(n-4) + 2967*a(n-5) + 4906*a(n-6) - 10083*a(n-7) - 18957*a(n-8) + 15750*a(n-9) + 31293*a(n-10) - 13335*a(n-11) - 23929*a(n-12) + 6426*a(n-13) + 7824*a(n-14) - 1336*a(n-15) - 1152*a(n-16) + 96*a(n-17) + 64*a(n-18) for n > 21.

A229641 Number of defective 3-colorings of a 5 X n 0..2 array connected horizontally, diagonally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

0, 925, 8800, 89331, 960325, 9722206, 98015235, 960209886, 9295982009, 88583128280, 835152387679, 7790969750780, 72061578435025, 661325695334298, 6028108188010041, 54611818274641520, 492062341420006203
Offset: 1

Views

Author

R. H. Hardin, Sep 27 2013

Keywords

Comments

Row 5 of A229637.

Examples

			Some solutions for n=3:
  0 1 2   0 1 0   0 1 2   0 1 1   0 1 0   0 1 2   0 1 2
  2 1 2   2 1 2   0 1 2   0 1 0   0 2 0   0 1 0   2 1 0
  1 0 2   2 0 2   0 2 0   2 1 2   0 2 0   2 2 0   2 1 2
  2 1 2   2 0 1   0 2 1   2 0 2   0 2 1   0 2 0   0 1 0
  2 1 0   0 2 1   1 0 1   1 0 2   2 0 1   1 2 0   1 1 2
		

Formula

Empirical: a(n) = 18*a(n-1) - 15*a(n-2) - 1191*a(n-3) + 3468*a(n-4) + 31983*a(n-5) - 108707*a(n-6) - 424479*a(n-7) + 1614489*a(n-8) + 2851598*a(n-9) - 13478352*a(n-10) - 7797810*a(n-11) + 66347438*a(n-12) - 12632640*a(n-13) - 190067859*a(n-14) + 147888798*a(n-15) + 287096430*a(n-16) - 412178619*a(n-17) - 138135927*a(n-18) + 522690894*a(n-19) - 168525432*a(n-20) - 273411640*a(n-21) + 227616084*a(n-22) + 9610272*a(n-23) - 73617984*a(n-24) + 21460464*a(n-25) + 7359984*a(n-26) - 4611168*a(n-27) + 186624*a(n-28) + 279936*a(n-29) - 46656*a(n-30) for n > 33.

A229642 Number of defective 3-colorings of a 6 X n 0..2 array connected horizontally, diagonally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

0, 3924, 50084, 747299, 11485716, 170405645, 2495874984, 35693194243, 503332240292, 6990933433009, 96001895136772, 1304362116389856, 17565879194817688, 234673938451844201, 3113368949256998744
Offset: 1

Views

Author

R. H. Hardin, Sep 27 2013

Keywords

Comments

Row 6 of A229637.

Examples

			Some solutions for n=3:
  0 1 0   0 1 0   0 1 0   0 1 0   0 1 0   0 1 0   0 1 0
  2 1 2   2 1 2   2 1 0   2 1 2   0 1 0   0 2 1   1 2 1
  2 1 0   1 1 0   2 0 1   1 0 1   2 0 2   0 1 0   1 0 1
  2 1 0   0 2 0   2 0 1   1 0 1   1 0 2   2 1 0   2 0 2
  1 2 0   1 2 0   1 0 1   1 0 2   1 0 1   2 1 0   2 1 2
  0 2 1   0 2 1   2 0 1   1 0 2   2 0 1   0 1 0   2 0 2
		

Formula

Empirical recurrence of order 69 (see link above).
Showing 1-10 of 12 results. Next