This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229646 #20 Oct 22 2015 14:48:25 %S A229646 1,4,28,232,2092,19884,196096,1988424,20611116,217526524,2330681348, %T A229646 25296553088,277653104800,3077568629256,34410056828392, %U A229646 387725845018512,4399241841920428,50228061806093020,576729989899675348 %N A229646 Cogrowth function of the group Baumslag-Solitar(4,4). %C A229646 a(n) is the number of words of length 2n in the letters a,a^{-1},t,t^{-1} that equal the identity of the group BS(4,4)=<a,t | ta^4=a^4t>. %H A229646 Murray Elder, <a href="/A229646/b229646.txt">Table of n, a(n) for n = 0..50</a> %H A229646 M. Elder, A. Rechnitzer, E. J. Janse van Rensburg, T. Wong, <a href="http://arxiv.org/abs/1309.4184">The cogrowth series for BS(N,N) is D-finite</a> %H A229646 <a href="/index/Gre#groups">Index entries for sequences related to groups</a> %e A229646 For n=1 there are 4 words of length 2 equal to the identity: aa^{-1}, a^{-1}a, tt^{-1}, t^{-1}t. %Y A229646 The cogrowth sequences for BS(N,N) for N = 1..10 are A002894, A229644, A229645, A229646, A229647, A229648, A229649, A229650, A229651, A229652. %K A229646 nonn,walk %O A229646 0,2 %A A229646 _Murray Elder_, Sep 27 2013