This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229647 #13 Oct 22 2015 14:49:07 %S A229647 1,4,28,232,2092,19864,195376,1971932,20303084,212400232,2251379688, %T A229647 24129199208,261067326544,2848016992032,31295785633532, %U A229647 346126420439512,3850363854970476,43057199315715676,483795646775017312,5459770924922887392 %N A229647 Cogrowth function of the group Baumslag-Solitar(5,5). %C A229647 a(n) is the number of words of length 2n in the letters a,a^{-1},t,t^{-1} that equal the identity of the group BS(5,5)=<a,t | ta^5=a^5t>. %H A229647 Murray Elder, <a href="/A229647/b229647.txt">Table of n, a(n) for n = 0..50</a> %H A229647 M. Elder, A. Rechnitzer, E. J. Janse van Rensburg, T. Wong, <a href="http://arxiv.org/abs/1309.4184">The cogrowth series for BS(N,N) is D-finite</a> %H A229647 <a href="/index/Gre#groups">Index entries for sequences related to groups</a> %e A229647 For n=1 there are 4 words of length 2 equal to the identity: aa^{-1}, a^{-1}a, tt^{-1}, t^{-1}t. %Y A229647 The cogrowth sequences for BS(N,N) for N = 1..10 are A002894, A229644, A229645, A229646, A229647, A229648, A229649, A229650, A229651, A229652. %K A229647 nonn,walk %O A229647 0,2 %A A229647 _Murray Elder_, Sep 27 2013