This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229648 #14 Oct 22 2015 14:48:53 %S A229648 1,4,28,232,2092,19864,195352,1970924,20277036,211864264,2241723728, %T A229648 23969620844,258583473640,2811005437348,30762114003572, %U A229648 338624821158892,3747021722921964,41656518905688504,465062224305678280,5211973807553021868 %N A229648 Cogrowth function of the group Baumslag-Solitar(6,6). %C A229648 a(n) is the number of words of length 2n in the letters a,a^{-1},t,t^{-1} that equal the identity of the group BS(6,6)=<a,t | ta^6=a^6t>. %H A229648 Murray Elder, <a href="/A229648/b229648.txt">Table of n, a(n) for n = 0..50</a> %H A229648 M. Elder, A. Rechnitzer, E. J. Janse van Rensburg, T. Wong, <a href="http://arxiv.org/abs/1309.4184">The cogrowth series for BS(N,N) is D-finite</a> %H A229648 <a href="/index/Gre#groups">Index entries for sequences related to groups</a> %e A229648 For n=1 there are 4 words of length 2 equal to the identity: aa^{-1}, a^{-1}a, tt^{-1}, t^{-1}t. %Y A229648 The cogrowth sequences for BS(N,N) for N = 1..10 are A002894, A229644, A229645, A229646, A229647, A229648, A229649, A229650, A229651, A229652. %K A229648 nonn,walk %O A229648 0,2 %A A229648 _Murray Elder_, Sep 27 2013