This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229649 #14 Oct 22 2015 14:48:55 %S A229649 1,4,28,232,2092,19864,195352,1970896,20275692,211825564,2240852928, %T A229649 23952708696,258285519688,2806105225928,30685515254240, %U A229649 337472968923532,3730218568024236,41417273400310152,461722437389957236,5166105817092273412 %N A229649 Cogrowth function of the group Baumslag-Solitar(7,7). %C A229649 a(n) is the number of words of length 2n in the letters a,a^{-1},t,t^{-1} that equal the identity of the group BS(7,7)=<a,t | ta^7=a^7t>. %H A229649 Murray Elder, <a href="/A229649/b229649.txt">Table of n, a(n) for n = 0..50</a> %H A229649 M. Elder, A. Rechnitzer, E. J. Janse van Rensburg, T. Wong, <a href="http://arxiv.org/abs/1309.4184">The cogrowth series for BS(N,N) is D-finite</a> %H A229649 <a href="/index/Gre#groups">Index entries for sequences related to groups</a> %e A229649 For n=1 there are 4 words of length 2 equal to the identity: aa^{-1}, a^{-1}a, tt^{-1}, t^{-1}t. %Y A229649 The cogrowth sequences for BS(N,N) for N = 1..10 are A002894, A229644, A229645, A229646, A229647, A229648, A229649, A229650, A229651, A229652. %K A229649 nonn,walk %O A229649 0,2 %A A229649 _Murray Elder_, Sep 27 2013