This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229651 #10 Oct 22 2015 14:48:58 %S A229651 1,4,28,232,2092,19864,195352,1970896,20275660,211823800,2240795888, %T A229651 23951292204,258255572584,2805537209648,30675548482880, %U A229651 337307986673572,3727607821613388,41377406950962504,461130952671387592,5157535231753964268 %N A229651 Cogrowth function of the group Baumslag-Solitar(9,9). %C A229651 a(n) is the number of words of length 2n in the letters a,a^{-1},t,t^{-1} that equal the identity of the group BS(9,9)=<a,t | ta^9=a^9t>. %H A229651 Murray Elder, <a href="/A229651/b229651.txt">Table of n, a(n) for n = 0..49</a> %H A229651 M. Elder, A. Rechnitzer, E. J. Janse van Rensburg, T. Wong, <a href="http://arxiv.org/abs/1309.4184">The cogrowth series for BS(N,N) is D-finite</a> %H A229651 <a href="/index/Gre#groups">Index entries for sequences related to groups</a> %e A229651 For n=1 there are 4 words of length 2 equal to the identity: aa^{-1}, a^{-1}a, tt^{-1}, t^{-1}t. %Y A229651 The cogrowth sequences for BS(N,N) for N = 1..10 are A002894, A229644, A229645, A229646, A229647, A229648, A229649, A229650, A229651, A229652. %K A229651 nonn,walk %O A229651 0,2 %A A229651 _Murray Elder_, Sep 28 2013