cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229699 Number of defective 3-colorings of a 6 X n 0..2 array connected horizontally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.

This page as a plain text file.
%I A229699 #10 Apr 28 2021 01:23:41
%S A229699 0,14080,539568,14461173,342532665,7551515197,159377253183,
%T A229699 3259483737876,65096269054893,1275742582477605,24619023091178172,
%U A229699 469011723417138726,8837860575136215933,164977425368113931622,3054546692947278299664
%N A229699 Number of defective 3-colorings of a 6 X n 0..2 array connected horizontally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.
%C A229699 Row 6 of A229694.
%H A229699 R. H. Hardin, <a href="/A229699/b229699.txt">Table of n, a(n) for n = 1..210</a>
%F A229699 Empirical: a(n) = 93*a(n-1) - 3821*a(n-2) + 91881*a(n-3) - 1443186*a(n-4) + 15597045*a(n-5) - 117977554*a(n-6) + 609544785*a(n-7) - 1876860224*a(n-8) + 672776487*a(n-9) + 25778362941*a(n-10) - 141476097204*a(n-11) + 370797282552*a(n-12) - 240042337335*a(n-13) - 2043251213592*a(n-14) + 9124472514798*a(n-15) - 19258050947535*a(n-16) + 16290852033186*a(n-17) + 33202946615828*a(n-18) - 157802120078712*a(n-19) + 340033091646544*a(n-20) - 501365137481568*a(n-21) + 551133229309632*a(n-22) - 463504649118336*a(n-23) + 298842654582272*a(n-24) - 145678126101504*a(n-25) + 52056403136512*a(n-26) - 12877220044800*a(n-27) + 1971231621120*a(n-28) - 140685410304*a(n-29) for n > 39.
%e A229699 Some solutions for n=3:
%e A229699   0 1 0   0 1 0   0 1 0   0 1 0   0 1 0   0 1 0   0 1 0
%e A229699   0 2 1   0 2 0   0 1 2   0 1 1   0 2 1   0 1 0   0 1 0
%e A229699   1 0 2   1 2 0   1 0 1   1 2 0   1 1 2   1 0 2   0 2 1
%e A229699   1 0 1   1 2 2   2 0 1   1 2 0   0 1 2   2 1 0   1 2 1
%e A229699   1 2 1   0 1 2   1 2 2   0 1 2   0 1 0   0 1 2   0 2 1
%e A229699   2 1 0   1 0 2   0 1 2   2 0 2   0 1 2   2 0 1   2 0 0
%Y A229699 Cf. A229694.
%K A229699 nonn
%O A229699 1,2
%A A229699 _R. H. Hardin_, Sep 27 2013