cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229705 Decimal expansion of Sum_{k>=1} 1/binomial(3k,k).

Original entry on oeis.org

4, 1, 4, 3, 2, 2, 0, 4, 4, 3, 2, 1, 8, 2, 0, 3, 9, 1, 8, 6, 5, 0, 0, 3, 9, 4, 3, 8, 3, 1, 2, 4, 8, 9, 5, 0, 8, 4, 5, 2, 7, 2, 7, 4, 2, 1, 4, 3, 9, 5, 2, 7, 7, 6, 4, 7, 2, 9, 3, 5, 3, 3, 2, 5, 6, 7, 2, 0, 4, 6, 7, 1, 2, 4, 6, 0, 4, 3, 8, 5, 6, 8, 8, 1, 5, 6, 3, 5, 8, 2, 4, 3, 0, 5, 0, 5, 7, 7, 1, 8, 2, 5, 5, 4, 1
Offset: 0

Views

Author

R. J. Mathar, Sep 27 2013

Keywords

Examples

			0.41432204432182039186500394383124895084527274214395..
		

Crossrefs

Programs

  • Mathematica
    HypergeometricPFQ[{1, 3/2, 2}, {4/3, 5/3}, 4/27]/3 // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Feb 18 2014 *)
    Chop[N[(1/3174)*(552 + 2*(-110*69^(2/3)*(2/(-4761 + 997*Sqrt[69]))^(1/3) + 2^(2/3)*(69*(-4761 + 997*Sqrt[69]))^(1/3))* Log[997 + (1/3)*(26757728271/2 - (2973080919*Sqrt[69])/2)^(1/3) + (997*((1/2)*(9 + Sqrt[69]))^(1/3))/3^(2/3)] + (110*69^(2/3)*(1 - I*Sqrt[3])*(2/(-4761 + 997*Sqrt[69]))^(1/3) - 2^(2/3)*(1 + I*Sqrt[3])* (69*(-4761 + 997*Sqrt[69]))^(1/3))* Log[997 - (1/6)*(1 + I*Sqrt[3])*(26757728271/2 - (2973080919*Sqrt[69])/2)^(1/3) - (997*(1 - I*Sqrt[3])*((1/2)*(9 + Sqrt[69]))^(1/3))/(2*3^(2/3))] + (110*69^(2/3)*(1 + I*Sqrt[3])*(2/(-4761 + 997*Sqrt[69]))^(1/3) - 2^(2/3)*(1 - I*Sqrt[3])* (69*(-4761 + 997*Sqrt[69]))^(1/3))* Log[997 - (1/6)*(1 - I*Sqrt[3])*(26757728271/2 - (2973080919*Sqrt[69])/2)^(1/3) - (997*(1 + I*Sqrt[3])*((1/2)*(9 + Sqrt[69]))^(1/3))/(2*3^(2/3))]), 120]] (* Vaclav Kotesovec, Nov 14 2020 *)

Formula

Equals 4/23 + (2/23) * Sum_{r: 23*r^3 + 55*r + 23 = 0} r * log(1987 - 598*r + 621*r^2) (Borwein and Girgensohn, 2005). - Amiram Eldar, Dec 07 2024

Extensions

More terms from Jean-François Alcover, Feb 18 2014