cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229707 Triangular array read by rows. T(n,k) is the number of strictly unimodal compositions of n with the greatest part equal to k; n>=1, 1<=k<=n.

This page as a plain text file.
%I A229707 #22 Oct 11 2013 08:44:51
%S A229707 1,0,1,0,2,1,0,1,2,1,0,0,3,2,1,0,0,4,3,2,1,0,0,3,6,3,2,1,0,0,2,7,6,3,
%T A229707 2,1,0,0,1,8,9,6,3,2,1,0,0,0,10,12,9,6,3,2,1,0,0,0,8,16,14,9,6,3,2,1,
%U A229707 0,0,0,7,20,20,14,9,6,3,2,1
%N A229707 Triangular array read by rows.  T(n,k) is the number of strictly unimodal compositions of n with the greatest part equal to k; n>=1, 1<=k<=n.
%C A229707 A strictly unimodal composition is a composition such that for some j,m  1 <= x(1) < x(2) < ... < x(j) > x(j+1) > ... > x(m) >= 1.
%C A229707 Row sums are A059618.
%C A229707 Sum of column k is A000302(k-1).
%C A229707 T(2*n+1,n+1) = A022567(n) for n>=0. - _Alois P. Heinz_, Oct 11 2013
%H A229707 Alois P. Heinz, <a href="/A229707/b229707.txt">Rows n = 1..141, flattened</a>
%F A229707 O.g.f. for column k: x^k * prod(i=1..k-1, 1 + x^i)^2.
%e A229707 1,
%e A229707 0, 1,
%e A229707 0, 2, 1,
%e A229707 0, 1, 2, 1,
%e A229707 0, 0, 3, 2, 1,
%e A229707 0, 0, 4, 3, 2, 1,
%e A229707 0, 0, 3, 6, 3, 2, 1,
%e A229707 0, 0, 2, 7, 6, 3, 2, 1,
%e A229707 0, 0, 1, 8, 9, 6, 3, 2, 1,
%e A229707 0, 0, 0, 10, 12, 9, 6, 3, 2, 1
%e A229707 T(7,3) = 3 because we have: 1+2+3+1 = 1+3+2+1 = 2+3+2.
%p A229707 b:= proc(n, t, k) option remember; `if`(n=0, `if`(k=0, 1, 0),
%p A229707       `if`(k>0, `if`(n<k, 0, add(b(n-j, j, `if`(j=k, 0, k)),
%p A229707        j=t+1..min(k, n))), add(b(n-j, j, 0), j=1..min(t-1, n))))
%p A229707     end:
%p A229707 T:= (n, k)-> b(n, 0, k):
%p A229707 seq(seq(T(n, k), k=1..n), n=1..16);  # _Alois P. Heinz_, Oct 07 2013
%t A229707 nn=10;Table[Take[Drop[Transpose[Map[PadRight[#,nn+1,0]&,Table[CoefficientList[Series[x^n Product[(1+x^i),{i,1,n-1}]^2,{x,0,nn}],x],{n,1,nn}]]],1][[n]],n],{n,1,nn}]//Grid
%Y A229707 Cf. A229706.
%K A229707 nonn,tabl
%O A229707 1,5
%A A229707 _Geoffrey Critzer_, Sep 27 2013