A229710 Least m of maximal order mod n such that m is a sum of two squares.
2, 5, 5, 5, 2, 13, 2, 5, 2, 5, 2, 5, 5, 5, 2, 13, 2, 13, 5, 5, 2, 37, 2, 5, 2, 13, 13, 5, 2, 5, 2, 5, 2, 13, 2, 13, 13, 5, 5, 13, 2, 5, 5, 5, 5, 13, 5, 37, 2, 5, 2, 5, 2, 37, 2, 13, 2, 13, 2, 5, 2, 5, 2, 5, 2, 17, 13, 5, 5, 5, 2, 13, 2, 37, 29, 13, 2, 13, 2, 5
Offset: 5
Keywords
Examples
The integer 5 = 2^2 + 1^2 has order 2 mod 12, the maximum, so a(12) = 5.
Links
- Eric M. Schmidt, Table of n, a(n) for n = 5..10000
- Christopher Ambrose, On the Least Primitive Root Expressible as a Sum of Two Squares, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 13, Paper A55, 2013.
Programs
-
Sage
def A229710(n) : m = Integers(n).unit_group_exponent(); return 0 if n==1 else next(i for i in PositiveIntegers() if mod(i,n).is_unit() and mod(i,n).multiplicative_order() == m and all(p%4 != 3 or e%2==0 for (p,e) in factor(i)))
Comments