A229775 Number of 3 X 3 0..n arrays with rows in lexicographically nondecreasing order and columns in nonincreasing order.
20, 322, 3232, 21331, 103222, 397460, 1287672, 3647349, 9281272, 21642038, 46934680, 95749927, 185397226, 343142248, 610590224, 1049496105, 1749325212, 2836933738, 4488787184, 6946186555, 10534026910, 15683670652, 22960578760
Offset: 1
Keywords
Examples
Some solutions for n=3: ..1..0..0....1..1..0....1..0..0....1..1..1....1..1..0....1..0..0....2..0..0 ..1..2..0....1..1..0....1..2..0....2..1..0....2..1..2....1..3..3....2..0..0 ..3..3..0....3..3..0....3..2..2....3..2..2....2..2..1....3..2..0....3..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 3 of A229774.
Formula
Empirical: a(n) = (1/120)*n^9 + (1/12)*n^8 + (133/360)*n^7 + (371/360)*n^6 + (19/9)*n^5 + (247/72)*n^4 + (403/90)*n^3 + (401/90)*n^2 + (91/30)*n + 1.
Conjectures from Colin Barker, Sep 21 2018: (Start)
G.f.: x*(20 + 122*x + 912*x^2 + 1101*x^3 + 912*x^4 - 125*x^5 + 118*x^6 - 45*x^7 + 10*x^8 - x^9) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>10.
(End)