This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229786 #21 Dec 12 2024 09:29:35 %S A229786 2,3,5,7,11,13,17,19,0,6,8,14,18,20,1,7,13,15,21,2,4,10,14,20,5,9,11, %T A229786 15,17,21,12,16,22,1,11,13,19,2,6,12,18,20,7,9,13,15,4,16,20,22,3,9, %U A229786 11,21,4,10,16,18,1,5,7,17,8,12,14,18,9,15,2,4,8,14,22,5,11,15,21,6,10,18,5,7,17,19,2,6,12,20,1,3,7,19,4,8,16,20,3,15,17,12,18,5,11,17,19,2,12,18,1,3,9,15,19,21 %N A229786 a(n) = n-th prime modulo 23. %C A229786 The formula k(n,p)=p mod n classifies prime numbers p(A000040) with n(A000027) in classes k, here n=23. Other examples for n=2,3,4,... are in the cross reference. Another description of this sequence is a(n) = n-th prime modulo 23 or Prime(n) mod 23. %H A229786 Freimut Marschner, <a href="/A229786/b229786.txt">Table of n, a(n) for n = 1..1900</a> %F A229786 k(n,p) = p mod n. %F A229786 Sum_k={1..n} a(k) ~ (23/2)*n. - _Amiram Eldar_, Dec 12 2024 %t A229786 Mod[Prime[Range[100]], 23] (* _Vincenzo Librandi_, May 07 2014 *) %o A229786 (Magma) [p mod(23): p in PrimesUpTo(500)]; // _Vincenzo Librandi_, May 07 2014 %Y A229786 Cf. similar sequences listed in A242119. %K A229786 nonn,easy %O A229786 1,1 %A A229786 _Freimut Marschner_, Sep 29 2013