A229796 Number of 3 X 3 0..n arrays with rows and columns in lexicographically nondecreasing order.
45, 1169, 14178, 102251, 520017, 2066505, 6842284, 19692165, 50724037, 119421753, 261015470, 535936479, 1043365337, 1940082033, 3466044984, 5978361865, 9995569629, 16254413569, 25781605914, 39983353235, 60755768865, 90619631609
Offset: 1
Keywords
Examples
Some solutions for n=2: ..0..1..1....0..0..2....0..0..0....1..1..2....1..1..1....0..2..2....0..2..2 ..0..1..2....1..2..1....0..2..2....1..2..0....1..1..2....1..0..2....1..0..1 ..2..1..0....2..0..1....0..2..2....2..0..1....2..2..1....1..2..2....1..2..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..207
Crossrefs
Row 3 of A229794.
Formula
Empirical: a(n) = (1/20)*n^9 + (11/24)*n^8 + (329/180)*n^7 + (1601/360)*n^6 + (545/72)*n^5 + (347/36)*n^4 + (3367/360)*n^3 + (313/45)*n^2 + (37/10)*n + 1.
Conjectures from Colin Barker, Sep 21 2018: (Start)
G.f.: x*(45 + 719*x + 4513*x^2 + 7676*x^3 + 4687*x^4 + 420*x^5 + 121*x^6 - 46*x^7 + 10*x^8 - x^9) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>10.
(End)