This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229823 #9 Mar 08 2017 04:25:48 %S A229823 0,1,1,-1,1,-1,-1,7,1,-21,-1,49,-1,-91,7,119,1,0,-21,-2,-1,6,49,-14, %T A229823 -1,28,-91,-42,7,28,119,62,1,-2,0,4,-21,-8,-2,14,-1,-14,6,-14,49,90, %U A229823 -14,-174,-1,2,28,-4,-91,6,-42,0,7,-28,28,76,119,-84,62,-78,1 %N A229823 Even bisection gives sequence a itself, n->a(2*(8*n+k)-1) gives k-th differences of a for k=1..8 with a(n)=n for n<2. %H A229823 Alois P. Heinz, <a href="/A229823/b229823.txt">Table of n, a(n) for n = 0..10000</a> %F A229823 a(2*n) = a(n), %F A229823 a(2*(8*n+k)-1) = Sum_{j=0..k} (-1)^j * C(k,j) * a(n+k-j) for k=1..8. %p A229823 a:= proc(n) option remember; local m, q, r; %p A229823 m:= (irem(n, 16, 'q')+1)/2; %p A229823 `if`(n<2, n, `if`(irem(n, 2, 'r')=0, a(r), %p A229823 add(a(q+m-j)*(-1)^j*binomial(m, j), j=0..m))) %p A229823 end: %p A229823 seq(a(n), n=0..100); %t A229823 a[n_] := a[n] = Module[{m, q, r, q2, r2}, {q, r} = QuotientRemainder[n, 16]; m = (r+1)/2; If[n<2, n, {q2, r2} = QuotientRemainder[n, 2]; If[r2 == 0, a[q2], Sum[a[q+m-j]*(-1)^j*Binomial[m, j], {j, 0, m}]]]]; Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Mar 08 2017, translated from Maple *) %Y A229823 Cf. A005590, A229817, A229818, A229819, A229820, A229821, A229822, A229824, A229825. %K A229823 sign,eigen %O A229823 0,8 %A A229823 _Alois P. Heinz_, Sep 30 2013