A229835 Number of ways to write n = (p - 1)/6 + q, where p is a prime, and q is a term of the sequence A000009.
0, 1, 2, 3, 3, 4, 5, 5, 5, 4, 6, 5, 7, 6, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 10, 9, 6, 8, 6, 10, 8, 9, 7, 7, 10, 10, 9, 8, 7, 10, 7, 10, 3, 7, 12, 8, 10, 6, 8, 9, 6, 10, 8, 11, 7, 11, 8, 7, 9, 8, 12, 10, 8, 12, 7, 9, 10, 10, 8, 11, 10, 7, 10, 9, 14, 9, 9, 9, 8, 10, 10, 9, 7, 8, 9, 9, 8, 10, 9, 10, 10, 9, 7, 8, 7, 12, 8
Offset: 1
Keywords
Examples
a(2) = 1 since 2 = (7 - 1)/ 6 + 1 with 7 prime, and 1 = A000009(i) for i = 0, 1, 2. a(3) = 2 since 3 = (7 - 1 )/6 + 2 with 7 prime and 2 = A000009(3) = A000009(4), and 3 = (13 - 1 )/6 + 1 with 13 prime and 1 = A000009(i) for i = 0, 1, 2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Do[m=0;Do[If[PartitionsQ[k]>=n,Goto[aa]];If[k>1&&PartitionsQ[k]==PartitionsQ[k-1],Goto[bb]]; If[PrimeQ[6(n-PartitionsQ[k])+1],m=m+1];Label[bb];Continue,{k,1,2n}]; Label[aa];Print[n," ",m];Continue,{n,1,100}]
Comments