A229838 Consider all primitive 60-degree triangles with sides A < B < C. The sequence gives the values of A.
3, 5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 21, 23, 24, 25, 27, 29, 31, 32, 33, 35, 37, 39, 40, 41, 43, 45, 47, 48, 49, 51, 53, 55, 56, 57, 59, 61, 63, 64, 65, 67, 69, 71, 72, 73, 75, 77, 79, 80, 81, 83, 85, 87, 88, 89, 91, 93, 95, 96, 97, 99, 101, 103, 104, 105
Offset: 1
Keywords
Examples
7 appears in the sequence because there exists a primitive 60-degree triangle with sides 7, 37 and 40.
Links
- Wikipedia, Integer triangle
Programs
-
PARI
\\ Gives terms not exceeding amax \\ e.g. pt60a(25) gives [3,5,7,8,9,11,13,15,16,17,19,21,23,24,25] pt60a(amax) = { s=[]; for(m=1, amax\2, for(n=1, m-1, if((m-n)%3!=0 && gcd(m, n)==1, if(2*m*n+n*n<=amax, s=concat(s, 2*m*n+n*n)); if(m*m-n*n<=amax, s=concat(s, m*m-n*n)) ) ) ); vecsort(s,,8) }
Formula
Empirical g.f.: -x*(x^5-x^4-x^3-2*x^2-2*x-3) / ((x-1)^2*(x^4+x^3+x^2+x+1)).
Comments