cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A230675 T(n,k)=Number of nXk 0..2 arrays x(i,j) with each element horizontally, diagonally or antidiagonally next to at least one element with value 2-x(i,j).

Original entry on oeis.org

0, 3, 0, 3, 15, 0, 9, 87, 81, 0, 15, 513, 1173, 423, 0, 33, 3387, 18915, 17271, 2247, 0, 63, 21933, 340563, 730503, 251595, 11925, 0, 129, 141411, 6081561, 37034355, 28368687, 3669765, 63291, 0, 255, 913245, 108108231, 1844154933, 4022141121, 1100265795
Offset: 1

Views

Author

R. H. Hardin, Oct 27 2013

Keywords

Comments

Table starts
.0......3.........3.............9...............15...................33
.0.....15........87...........513.............3387................21933
.0.....81......1173.........18915...........340563..............6081561
.0....423.....17271........730503.........37034355...........1844154933
.0...2247....251595......28368687.......4022141121.........559929294657
.0..11925...3669765....1100265795.....436827078531......169908632412447
.0..63291..53519163...42681522741...47444197636239....51564141085334199
.0.335943.780527655.1655698076319.5152946201086569.15648664251672721725

Examples

			Some solutions for n=3 k=4
..0..2..0..2....2..0..0..2....2..0..1..2....0..0..0..2....1..1..1..1
..0..0..1..1....0..1..0..2....1..1..0..1....2..2..0..1....1..2..1..2
..2..2..0..1....1..2..1..2....1..1..1..2....2..0..1..2....2..0..0..2
		

Crossrefs

Column 2 is A229841
Row 1 is A062510(n-1)

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 5*a(n-1) +2*a(n-2) -a(n-3) -5*a(n-4)
k=3: a(n) = 14*a(n-1) +9*a(n-2) -9*a(n-3) +30*a(n-4) -19*a(n-5)
k=4: [order 32]
k=5: [order 80]
Empirical for row n:
n=1: a(n) = a(n-1) +2*a(n-2)
n=2: a(n) = 5*a(n-1) +6*a(n-2) +20*a(n-3) +12*a(n-4) +8*a(n-5)
n=3: [order 15] for n>16
n=4: [order 64] for n>65
Showing 1-1 of 1 results.