This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229849 #10 Oct 06 2013 15:29:00 %S A229849 5,8,16,24,33,35,39,45,51,56,57,63,77,80,85,88,91,95,105,112,115,120, %T A229849 143,145,155,160,161,165,168,175,187,192,195,203,208,209,217,221,224, %U A229849 231,247,253,259,261,272,273,279,280,287,288,299,301,304,315,320,323 %N A229849 Consider all primitive 120-degree triangles with sides A < B < C. The sequence gives the values of B. %C A229849 A primitive triangle is one for which the sides have no common factor. %C A229849 For n>1, A106505(n) seems to give the values of A and A004611(n) seems to give the values of C. %H A229849 Wikipedia, <a href="https://en.wikipedia.org/wiki/Integer_triangle">Integer triangle</a> %e A229849 33 appears in the sequence because there exists a primitive 120-degree triangle with sides 7, 33 and 37. %o A229849 (PARI) %o A229849 \\ Gives values of B not exceeding bmax %o A229849 \\ e.g. pt120b(80) gives [5, 8, 16, 24, 33, 35, 39, 45, 51, 56, 57, 63, 77, 80] %o A229849 pt120b(bmax) = { %o A229849 s=[]; %o A229849 for(m=1, (bmax-1)\2, %o A229849 for(n=1, m-1, %o A229849 if((m-n)%3!=0 && gcd(m, n)==1, %o A229849 a=m*m-n*n; %o A229849 b=n*(2*m+n); %o A229849 if(a>b, b=a); %o A229849 if(b<=bmax, s=concat(s, b)) %o A229849 ) %o A229849 ) %o A229849 ); %o A229849 vecsort(s,,8) %o A229849 } %Y A229849 Cf. A004611, A106505, A229858, A229859. %K A229849 nonn %O A229849 1,1 %A A229849 _Colin Barker_, Oct 06 2013