A229858 Consider all 120-degree triangles with sides A < B < C. The sequence gives the values of A.
3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
Offset: 1
Examples
12 appears in the sequence because there exists a 120-degree triangle with sides 12, 20 and 28.
Links
- Wikipedia, Integer triangle
- Kival Ngaokrajang, Illustration of initial terms
- Index entries for linear recurrences with constant coefficients, signature (2, -1).
Programs
-
PARI
\\ Gives values of A not exceeding amax. \\ e.g. t120a(20) gives [3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] t120a(amax) = { v=pt120a(amax); s=[]; for(i=1, #v, for(m=1, amax\v[i], if(v[i]*m<=amax, s=concat(s, v[i]*m)) ) ); vecsort(s,,8) } \\ Gives values of A not exceeding amax in primitive triangles. \\ e.g. pt120a(20) gives [3, 5, 7, 9, 11, 13, 15, 16, 17, 19] pt120a(amax) = { s=[]; for(m=1, (amax-1)\2, for(n=1, m-1, if((m-n)%3!=0 && gcd(m, n)==1, a=m*m-n*n; b=n*(2*m+n); if(a>b, a=b); if(a<=amax, s=concat(s, a)) ) ) ); vecsort(s,,8) }
Formula
a(n) = n+4 for n>4.
a(n) = 2*a(n-1)-a(n-2) for n>6.
G.f.: -x*(x^5-x^4+x^2+x-3) / (x-1)^2.
Comments