A229859 Consider all 120-degree triangles with sides A < B < C. The sequence gives the values of B.
5, 8, 10, 15, 16, 20, 24, 25, 30, 32, 33, 35, 39, 40, 45, 48, 50, 51, 55, 56, 57, 60, 63, 64, 65, 66, 70, 72, 75, 77, 78, 80, 85, 88, 90, 91, 95, 96, 99, 100, 102, 104, 105, 110, 112, 114, 115, 117, 120, 125, 126, 128, 130, 132, 135, 136, 140, 143, 144, 145
Offset: 1
Keywords
Examples
20 appears in the sequence because there exists a 120-degree triangle with sides 12, 20 and 28.
Links
- Wikipedia, Integer triangle
Programs
-
PARI
\\ Gives values of B not exceeding bmax. \\ e.g. t120b(40) gives [5, 8, 10, 15, 16, 20, 24, 25, 30, 32, 33, 35, 39, 40] t120b(bmax) = { v=pt120b(bmax); s=[]; for(i=1, #v, for(m=1, bmax\v[i], if(v[i]*m<=bmax, s=concat(s, v[i]*m)) ) ); vecsort(s,,8) } \\ Gives values of B not exceeding bmax in primitive triangles. \\ e.g. pt120b(40) gives [5, 8, 16, 24, 33, 35, 39] pt120b(bmax) = { s=[]; for(m=1, (bmax-1)\2, for(n=1, m-1, if((m-n)%3!=0 && gcd(m, n)==1, a=m*m-n*n; b=n*(2*m+n); if(a>b, b=a); if(b<=bmax, s=concat(s, b)) ) ) ); vecsort(s,,8) }
Comments