A229910 a(n) = |{0 < g < prime(n): both g and g + g^{-1} are primitive roots modulo prime(n)}|, where g^{-1} is the inverse of g modulo prime(n).
0, 0, 0, 0, 2, 0, 4, 2, 4, 4, 2, 4, 8, 6, 10, 8, 14, 4, 4, 12, 8, 6, 20, 24, 16, 16, 12, 26, 8, 16, 14, 12, 24, 14, 32, 10, 20, 18, 40, 48, 44, 4, 30, 16, 32, 18, 14, 18, 56, 8, 60, 40, 12, 40, 64, 64, 72, 20, 40, 32, 36, 80, 22, 44, 24, 72, 22, 36, 86, 32, 84, 88, 40, 24, 28, 94, 104, 28, 76, 28
Offset: 1
Keywords
Examples
a(5) = 2 since 2 and 6 are primitive roots modulo prime(5) = 11 with 2*6 == 1 (mod 11) and 2 + 6 = 8 also a primitive root modulo 11. This example recalls that there is no symmetry g -> -g (in Z/pZ) (nor a symmetry w.r.t. odd/even g), therefore one cannot (unfortunately) compute a(n) by taking twice the count of the g<prime(n)/2 which satisfy the condition. E.g., for p=19=prime(8), only g = 14 (= -5) and g = 15 (= -4) are in the set. - _M. F. Hasler_, Oct 06 2013
Links
- M. F. Hasler, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
gp[g_,p_]:=gp[g,p]=Mod[g,p]>0&&Length[Union[Table[Mod[g^k, p],{k,1,p-1}]]]==p-1 a[n_]:=Sum[If[gp[g,Prime[n]]&&gp[g+PowerMod[g,-1,Prime[n]],Prime[n]],1,0],{g,1,Prime[n]-1}] Table[a[n],{n,1,80}]
-
PARI
A229910(n)=my(p=prime(n));sum(g=2,p-2,znorder(Mod(g,p))==p-1 & Mod(g,p)^-1+g & znorder(Mod(g,p)^-1+g)==p-1) \\ M. F. Hasler, Oct 06 2013
-
PARI
A229910(n)={my(p=prime(n),u=0,s=0,i); n=p-1; for(g=2,p-2, bittest(u,g)&next; znorder(Mod(g,p))
M. F. Hasler, Oct 06 2013 -
Perl
use ntheory ":all"; sub a229910 { my $p=nth_prime(shift); scalar(grep {is_primitive_root($,$p) && is_primitive_root($+invmod($,$p),$p)} 2..$p-2); } # _Dana Jacobsen, Sep 19 2016
Extensions
Values a(1..400) double checked and extended to n=1000 by M. F. Hasler, Oct 06 2013
Comments