This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229914 #43 Oct 09 2020 03:50:59 %S A229914 1,3,7,16,33,63,117,202,344,566,908,1419,2206,3334,4988,7378,10778, %T A229914 15535,22281,31547,44405,62011,85939,118281,162136,220494,298531, %U A229914 402163,539181,719301,956287,1265022,1667973,2190934,2867470,3739797,4864163,6303461,8146863,10499087,13493267,17293169,22111954 %N A229914 Number of pyramid polycubes of a given volume in dimension 3. %C A229914 A pyramid polycube is obtained by gluing together horizontal plateaux (parallelepipeds of height 1) in such a way that (0,0,0) belongs to the first plateau and each cell of coordinate (0,b,c) belonging to the first plateau is such that b , c >= 0. %C A229914 If the cell with coordinates (a,b,c) belongs to the (a+1)-st plateau (a>0), then the cell with coordinates (a-1, b, c) belongs to the a-th plateau. %H A229914 C. Carré, N. Debroux, M. Deneufchatel, J.-Ph. Dubernard, C. Hillariet, J.-G. Luque, and O. Mallet, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Dubernard/dub4.html">Enumeration of Polycubes and Dirichlet Convolutions</a>, J. Int. Seq. 18 (2015) 15.11.4; also <a href="https://hal.archives-ouvertes.fr/hal-00905889/en">hal-00905889</a>, version 1. %F A229914 The generating function for the numbers of pyramids of height h and volumes v_1 , ... v_h is (n_1-n_2+1) *(n_2-n_3+1) *... *(n_{h-1}-n_h+1) *(x_1^{n_1} * ... x_h^{n_h}) / ((1-x_1^{n_1}) *(1-x_1^{n_1}*x_2^{n_2}) *... *(1-x_1^{n_1}*x_2^{n_2}*...x_h^{n_h})). %F A229914 This sequence is obtained with x_1 = ... = x_h = p by summing over n_1>=, ... >= n_h>=1 and then over h. %Y A229914 A001931 is an upper bound. %K A229914 nonn %O A229914 1,2 %A A229914 _Matthieu Deneufchâtel_, Oct 03 2013