This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229917 #15 Oct 13 2013 10:15:32 %S A229917 1,4,7,16,22,46,58,107,140,227,287,464,563,851,1067,1530,1866,2661, %T A229917 3198,4428,5361,7185,8613,11524,13639,17839,21272,27359,32300,41369, %U A229917 48512,61311,72105,89904,105226,130834,152164,187297,218356,266444,309125,375995,434670,525045,607329,728256,839874,1004938 %N A229917 Numbers of espalier polycubes of a given volume in dimension 4. %C A229917 A (d+1)-pyramid polycube is a (d+1)-polycube obtained by gluing together horizontal (d+1)-plateaux (parallelepipeds of height 1) in such a way that the cell (0,0,...,0) belongs to the first plateau and each cell with coordinates (0,n_1,...,n_d) belonging to the first plateau is such that n_1 , ... , n_d >= 0. %C A229917 If the cell with coordinates (n_0,n_1,...,n_d) belongs to the (n_0+1)-st plateau (n_0>0), then the cell with coordinates (n_0-1, n_1, ... ,n_d) belongs to the n_0-th plateau. %C A229917 A (d+1)-espalier is a (d+1)-pyramid such that each plateau contains the cell (n_0,0,...,0). %Y A229917 Cf. A229915, A227925. %K A229917 nonn %O A229917 1,2 %A A229917 _Matthieu Deneufchâtel_, Oct 03 2013