This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229926 #13 Mar 10 2017 21:43:32 %S A229926 6,12,24,48,96,192,384,768,1080,1080,3888,4320,15360,69120,69120, %T A229926 248832,349920,349920,1259712,342144,7226112,10782720,17031168, %U A229926 18095616,19226592,21660210,30270240,44706816,81544320,128798208 %N A229926 Integer areas of the integer-sided triangles T(n) defined by the property: a(0) = 6 ; for n > 0, a(n) is the area A where the smallest side of T(n) is the greatest side of T(n-1). %C A229926 Subsequence of A188158. %C A229926 The sequence of the common sides is {5, 6, 10, 12, 20, 24, 40, 48, 51, 90, 108, 208, 384, 408, 720, 864, 918, 1620, 1944, 3880, 4656, 6240, 6336, ...} %C A229926 a(n) = 6*2^n for n = 0, 1, 2,..., 7, and then this property disappears. %C A229926 The area is given by Heron's formula A = sqrt(s(s-a)(s-b)(s-c)) where the semiperimeter s = (a + b + c)/2. %C A229926 The following table gives the first values (n, A, a, b, c) where a <= b <= c are the integer sides of the triangles. %C A229926 +----+------+-----+-----+-----+ %C A229926 | n | A | a | b | c | %C A229926 +----+------+-----+-----+-----+ %C A229926 | 0 | 6 | 3 | 4 | 5 | %C A229926 | 1 | 12 | 5 | 5 | 6 | %C A229926 | 2 | 24 | 6 | 8 | 10 | %C A229926 | 3 | 48 | 10 | 10 | 12 | %C A229926 | 4 | 96 | 12 | 16 | 20 | %C A229926 | 5 | 192 | 20 | 20 | 24 | %C A229926 | 6 | 384 | 24 | 32 | 40 | %C A229926 | 7 | 768 | 40 | 40 | 48 | %C A229926 | 8 | 1080 | 48 | 51 | 51 | %C A229926 | 9 | 1080 | 51 | 51 | 90 | %C A229926 | 10 | 3888 | 90 | 90 | 108 | %C A229926 | 11 | 4320 | 108 | 116 | 208 | %C A229926 +----+------+-----+-----+-----+ %p A229926 with(numtheory):nn:=15000:a:=5: printf ( "%d %d %d %d %d \n",1,6,3,4,a): %p A229926 for n from 2 to 40 do: %p A229926 ii:=0: %p A229926 for b from a to nn while(ii=0) do: %p A229926 for c from b to nn while(ii=0) do: %p A229926 p:=(a+b+c)/2 : x:=p*(p-a)*(p-b)*(p-c): %p A229926 if x>0 %p A229926 then %p A229926 x0:= sqrt(x): %p A229926 else %p A229926 fi: %p A229926 if x0=floor(x0) %p A229926 then %p A229926 ii:=1:printf ( "%d %d %d %d %d \n",n,x0,a,b,c): %p A229926 a:=max(b,c): %p A229926 else %p A229926 fi: %p A229926 od: %p A229926 od: %p A229926 od: %Y A229926 Cf. A188158. %K A229926 nonn %O A229926 0,1 %A A229926 _Michel Lagneau_, Oct 03 2013