cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229929 Number of nX3 0..2 arrays x(i,j) with each element horizontally, vertically or antidiagonally next to at least one element with value 2-x(i,j).

This page as a plain text file.
%I A229929 #6 Jun 02 2025 08:39:46
%S A229929 3,115,1889,33119,575757,10015447,174306687,3033162257,52780116071,
%T A229929 918441159087,15982039040815,278107289563015,4839412932483379,
%U A229929 84211817278578727,1465390522949952937,25499620386183396001
%N A229929 Number of nX3 0..2 arrays x(i,j) with each element horizontally, vertically or antidiagonally next to at least one element with value 2-x(i,j).
%C A229929 Column 3 of A229934
%H A229929 R. H. Hardin, <a href="/A229929/b229929.txt">Table of n, a(n) for n = 1..210</a>
%F A229929 Empirical: a(n) = 17*a(n-1) -35*a(n-2) +714*a(n-3) -186*a(n-4) +7255*a(n-5) +20662*a(n-6) -64966*a(n-7) +84269*a(n-8) +187347*a(n-9) -322147*a(n-10) -628502*a(n-11) -1841129*a(n-12) +1612168*a(n-13) +1569555*a(n-14) +6807437*a(n-15) +4484863*a(n-16) -10256653*a(n-17) -6172407*a(n-18) -30616026*a(n-19) +24692244*a(n-20) -26449944*a(n-21) +78202441*a(n-22) -22109082*a(n-23) +88650916*a(n-24) -93802931*a(n-25) +32432730*a(n-26) -90623604*a(n-27) +31406227*a(n-28) -43230346*a(n-29) +32065489*a(n-30) -12064122*a(n-31) +4898739*a(n-32) -6961489*a(n-33) -2339302*a(n-34) -1481520*a(n-35) -123582*a(n-36) +105456*a(n-37) +41286*a(n-38) -230321*a(n-39) +22096*a(n-40) -50268*a(n-41) -10864*a(n-42) -6264*a(n-43) -2368*a(n-44) +856*a(n-45) -680*a(n-46) +404*a(n-47) -32*a(n-48) -80*a(n-49) for n>50
%e A229929 Some solutions for n=3
%e A229929 ..1..0..2....0..2..0....0..1..1....2..0..0....2..0..1....1..1..1....2..0..2
%e A229929 ..1..0..0....0..1..0....2..2..2....0..2..1....0..1..0....0..2..1....2..2..1
%e A229929 ..1..1..2....2..1..2....0..2..0....2..0..1....1..2..2....0..0..1....0..2..1
%K A229929 nonn
%O A229929 1,1
%A A229929 _R. H. Hardin_, Oct 04 2013