This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229936 #19 Nov 01 2013 13:24:20 %S A229936 0,0,0,3,12,45,126,343,848,2034,4700,10648,23652,51935,112798,243120, %T A229936 520592,1109063,2352366,4971426,10473220,22003464,46115300,96440127, %U A229936 201288792,419381450,872351896,1811858058,3757992280,7784495839,16105959240,33285784442 %N A229936 Sum of all parts of all compositions of n with at least two parts in increasing order. %C A229936 Sum of all parts of all compositions of n that are not partitions of n (see example). %F A229936 a(n) = n*A056823(n) = n*(A011782(n) - A000041(n)). %F A229936 a(n) = A001787(n) - A066186(n), n >= 1. %e A229936 For n = 4 the table shows both the compositions and the partitions of 4. There are three compositions of 4 that are not partitions of 4. %e A229936 ---------------------------------------------------- %e A229936 Compositions Partitions Sum of all parts %e A229936 ---------------------------------------------------- %e A229936 [1, 1, 1, 1] = [1, 1, 1, 1] %e A229936 [2, 1, 1] = [2, 1, 1] %e A229936 [1, 2, 1] 4 %e A229936 [3, 1] = [3, 1] %e A229936 [1, 1, 2] 4 %e A229936 [2, 2] = [2, 2] %e A229936 [1, 3] 4 %e A229936 [4] = [4] %e A229936 ---------------------------------------------------- %e A229936 Total 12 %e A229936 . %e A229936 A partition of a positive integer n is any nonincreasing sequence of positive integers which sum to n, ence the compositions of 4 that are not partitions of 4 are [1, 2, 1], [1, 1, 2] and [1, 3]. The sum of all parts of these compositions is 1+3+1+2+1+1+1+2 = 3*4 = 12. On the other hand the sum of all parts in all compositions of 4 is A001787(4) = 32, and the sum of all parts in all partitions of 4 is A066186(4) = 20, so a(4) = 32 - 20 = 12. %Y A229936 Cf. A000041, A001787, A011782, A056823, A066186, A229935. %K A229936 nonn %O A229936 0,4 %A A229936 _Omar E. Pol_, Oct 14 2013