This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229946 #46 Apr 01 2017 21:02:32 %S A229946 0,1,0,2,0,3,0,2,1,5,0,3,2,7,0,2,1,5,3,6,5,11,0,3,2,7,5,9,8,15,0,2,1, %T A229946 5,3,6,5,11,7,12,11,15,14,22,0,3,2,7,5,9,8,15,11,14,13,19,17,22,21,30, %U A229946 0,2,1,5,3,6,5,11,7,12,11,15,14,22,15,19,18,25,23,29,28,33,32,42,0 %N A229946 Height of the peaks and the valleys in the Dyck path whose j-th ascending line segment has A141285(j) steps and whose j-th descending line segment has A194446(j) steps. %C A229946 Also 0 together the alternating sums of A220517. %C A229946 The master diagram of regions of the set of partitions of all positive integers is a total dissection of the first quadrant of the square grid in which the j-th horizontal line segments has length A141285(j) and the j-th vertical line segment has length A194446(j). For the definition of "region" see A206437. The first A000041(k) regions of the diagram represent the set of partitions of k in colexicographic order (see A211992). The length of the j-th horizontal line segment equals the largest part of the j-th partition of k and equals the largest part of the j-th region of the diagram. The length of the j-th vertical line segment (which is the line segment ending in row j) equals the number of parts in the j-th region. %C A229946 For k = 7, the diagram 1 represents the partitions of 7. The diagram 2 is a minimalist version of the structure which does not contain the axes [X, Y]. See below: %C A229946 . %C A229946 . j Diagram 1 Partitions Diagram 2 %C A229946 . _ _ _ _ _ _ _ _ _ _ _ _ _ _ %C A229946 . 15 |_ _ _ _ | 7 _ _ _ _ | %C A229946 . 14 |_ _ _ _|_ | 4+3 _ _ _ _|_ | %C A229946 . 13 |_ _ _ | | 5+2 _ _ _ | | %C A229946 . 12 |_ _ _|_ _|_ | 3+2+2 _ _ _|_ _|_ | %C A229946 . 11 |_ _ _ | | 6+1 _ _ _ | | %C A229946 . 10 |_ _ _|_ | | 3+3+1 _ _ _|_ | | %C A229946 . 9 |_ _ | | | 4+2+1 _ _ | | | %C A229946 . 8 |_ _|_ _|_ | | 2+2+2+1 _ _|_ _|_ | | %C A229946 . 7 |_ _ _ | | | 5+1+1 _ _ _ | | | %C A229946 . 6 |_ _ _|_ | | | 3+2+1+1 _ _ _|_ | | | %C A229946 . 5 |_ _ | | | | 4+1+1+1 _ _ | | | | %C A229946 . 4 |_ _|_ | | | | 2+2+1+1+1 _ _|_ | | | | %C A229946 . 3 |_ _ | | | | | 3+1+1+1+1 _ _ | | | | | %C A229946 . 2 |_ | | | | | | 2+1+1+1+1+1 _ | | | | | | %C A229946 . 1 |_|_|_|_|_|_|_| 1+1+1+1+1+1+1 | | | | | | | %C A229946 . %C A229946 . 1 2 3 4 5 6 7 %C A229946 . %C A229946 The second diagram has the property that if the number of regions is also the number of partitions of k so the sum of the lengths of all horizontal line segment equals the sum of the lengths of all vertical line segments and equals A006128(k), for k >= 1. %C A229946 Also the diagram has the property that it can be transformed in a Dyck path (see example). %C A229946 The height of the peaks and the valleys of the infinite Dyck path give this sequence. %C A229946 Q: Is this Dyck path a fractal? %H A229946 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpa408.jpg">Visualization of regions in a diagram for A006128</a> %F A229946 a(0) = 0; a(n) = a(n-1) + (-1)^(n-1)*A220517(n), n >= 1. %e A229946 Illustration of initial terms (n = 0..21): %e A229946 . 11 %e A229946 . / %e A229946 . / %e A229946 . / %e A229946 . 7 / %e A229946 . /\ 6 / %e A229946 . 5 / \ 5 /\/ %e A229946 . /\ / \ /\ / 5 %e A229946 . 3 / \ 3 / \ / \/ %e A229946 . 2 /\ 2 / \ /\/ \ 2 / 3 %e A229946 . 1 /\ / \ /\/ \ / 2 \ /\/ %e A229946 . /\/ \/ \/ 1 \/ \/ 1 %e A229946 . 0 0 0 0 0 0 %e A229946 . %e A229946 Note that the k-th largest peak between two valleys at height 0 is also A000041(k) and the next term is always 0. %e A229946 . %e A229946 Written as an irregular triangle in which row k has length 2*A187219(k), k >= 1, the sequence begins: %e A229946 0,1; %e A229946 0,2; %e A229946 0,3; %e A229946 0,2,1,5; %e A229946 0,3,2,7; %e A229946 0,2,1,5,3,6,5,11; %e A229946 0,3,2,7,5,9,8,15; %e A229946 0,2,1,5,3,6,5,11,7,12,11,15,14,22; %e A229946 0,3,2,7,5,9,8,15,11,14,13,19,17,22,21,30; %e A229946 0,2,1,5,3,6,5,11,7,12,11,15,14,22,15,19,18,25,23,29,28,33,32,42; %e A229946 ... %Y A229946 Column 1 is A000004. Right border gives A000041 for the positive integers. %Y A229946 Cf. A006128, A135010, A138137, A139582, A141285, A186412, A187219, A194446, A194447, A193870, A206437, A207779, A211009, A211978, A211992, A220517, A225600, A225610. %K A229946 nonn,tabf %O A229946 0,4 %A A229946 _Omar E. Pol_, Nov 03 2013