This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229951 #16 Nov 16 2013 13:38:26 %S A229951 0,0,0,1,0,1,0,1,0,2,1,2,0,2,1,2,0,2,1,3,1,3,2,3,0,3,2,3,1,3,1,3,1,4, %T A229951 3,4,1,4,3,4,1,4,2,4,2,4,3,4,0,4,3,5,3,5,3,5,2,5,4,5,1,5,4,5,2,5,3,5, %U A229951 3,5,3,5,1,6,5,6,4,6,4,6,2,6,5,6,2,6,5 %N A229951 Number of toothpicks added at n-th stage to the toothpick structure of A229950. %C A229951 Essentially the first differences of A229950. %C A229951 Also [0, 0, 0] together the row sums of triangle A229940. %C A229951 The toothpick structure has the property that the number of exposed endpoints in the row 2k equals the number of divisors of k, if 1<2k<n, k>=1. See example and Link section. %H A229951 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/poldiv13.jpg">Illustration of initial terms of the divisor function (A000005)</a>, see the third picture. %H A229951 N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a> %H A229951 <a href="/index/To#toothpick">Index entries for sequences related to toothpick sequences</a> %e A229951 Illustration of initial terms: %e A229951 ---------------------------------------- %e A229951 n a(n) Diagram A000005 %e A229951 ---------------------------------------- %e A229951 0 0 %e A229951 1 0 %e A229951 2 0 1 %e A229951 3 1 | %e A229951 4 0 2 %e A229951 5 1 | %e A229951 6 0 2 %e A229951 7 1 | %e A229951 8 0 3 %e A229951 9 2 | | %e A229951 10 1 | 2 %e A229951 11 2 | | %e A229951 12 0 4 %e A229951 13 2 | | %e A229951 14 1 | 2 %e A229951 15 2 | | %e A229951 16 0 4 %e A229951 17 2 | | %e A229951 18 1 | 3 %e A229951 19 3 | | | %e A229951 20 1 | 4 %e A229951 21 3 | | | %e A229951 22 2 | | 2 %e A229951 23 3 | | | %e A229951 24 0 6 %e A229951 25 3 | | | %e A229951 26 2 | | 2 %e A229951 27 3 | | | %e A229951 28 1 | 4 %e A229951 29 3 | | | %e A229951 30 1 | 4 %e A229951 31 3 | | | %e A229951 32 1 | 5 %e A229951 33 4 | | | | %e A229951 ... %Y A229951 Cf. A000005, A139250, A139251, A229940, A229942, A229950. %K A229951 nonn,tabf %O A229951 0,10 %A A229951 _Omar E. Pol_, Oct 04 2013