This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229961 #15 Nov 01 2021 16:54:13 %S A229961 1,2,3,1,5,2,1,7,5,2,3,1,1,10,7,5,3,1,6,3,1,2,3,1,1,13,11,8,6,4,2,9,7, %T A229961 4,2,5,3,1,7,4,2,3,4,2,1,17,14,12,10,8,5,3,1,13,10,8,6,4,1,9,6,4,2,5, %U A229961 2,1,10,8,6,4,1,6,4,2,2,4,2,8,5,3,1,4,1,1,4,2,1 %N A229961 T(n,k) is the number of partitions in each run k of strictly increasing numbers of 2 X 2 squares in the list of partitions of n^2 into squares, where partition sorting order is ascending with larger squares taking higher precedence; irregular triangle T(n,k), 1 <= n, 1 <= k <= A227940(n), read by rows. %C A229961 Row lengths are given by A227940. %H A229961 Christopher Hunt Gribble, <a href="/A229961/a229961.cpp.txt">C++ program</a> %e A229961 For n = 4, the 8 partitions of 16 into square parts are: %e A229961 Partition Square side %e A229961 . 1 2 3 4 %e A229961 . %e A229961 . 1 16 0 0 0 %e A229961 . 2 12 1 0 0 %e A229961 . 3 8 2 0 0 %e A229961 . 4 4 3 0 0 %e A229961 . 5 0 4 0 0 %e A229961 . 6 7 0 1 0 %e A229961 . 7 3 1 1 0 %e A229961 . 8 0 0 0 1 %e A229961 So T(4,1) = 5 as the first runs of 2 X 2 squares is (0,1,2,3,4) from partitions 1 to 5; %e A229961 T(4,2) = 2 as the second run is (0,1) from partitions 6 to 7; %e A229961 T(4,3) = 1 as the third run is (0) from partition 8. %e A229961 The irregular triangle begins: %e A229961 \ k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ... %e A229961 n %e A229961 1 1 %e A229961 2 2 %e A229961 3 3 1 %e A229961 4 5 2 1 %e A229961 5 7 5 2 3 1 1 %e A229961 6 10 7 5 3 1 6 3 1 2 3 1 1 %e A229961 7 13 11 8 6 4 2 9 7 4 2 5 3 1 7 4 2 3 4 ... %e A229961 8 17 14 12 10 8 5 3 1 13 10 8 6 4 1 9 6 4 2 ... %e A229961 9 21 19 16 14 12 10 7 5 3 1 17 15 12 10 8 6 3 1 ... %e A229961 10 26 23 21 19 17 14 12 10 8 5 3 1 22 19 17 15 13 10 ... %Y A229961 Row sums = A037444. %Y A229961 Cf. A227940. %K A229961 nonn,tabf %O A229961 1,2 %A A229961 _Christopher Hunt Gribble_, Oct 04 2013