cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229964 Number of pairs of integers q1, q2 with 1 < q1 < q2 < n such that if we randomly pick an integer in {1, ..., n}, the event of being divisible by q1 is independent of being divisible by q2.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 0, 3, 2, 1, 0, 4, 0, 5, 1, 3, 0, 8, 0, 4, 3, 4, 0, 10, 0, 7, 3, 5, 2, 9, 0, 6, 4, 9, 0, 13, 0, 12, 6, 6, 0, 16, 0, 9, 6, 9, 0, 14, 1, 12, 3, 8, 0, 25, 0, 12, 10, 11, 4, 17, 0, 12, 7, 17, 0, 25, 0, 14, 12, 14, 2, 21, 0, 21, 5
Offset: 1

Views

Author

Eric M. Schmidt, Oct 04 2013

Keywords

Examples

			If n = 12, then q1 = 2 and q2 = 5 satisfy the condition as the probability of an integer in {1, ..., 12} being divisible by 2 is 1/2, by 5 is 1/6, and by both 2 and 5 is 1/12.
		

Crossrefs

The n such that a(n) = m for various m are given by: m=0, A166684; m=1, A229965; m=2, A082663; m=3, A229966; m=4, A229967.

Programs

  • Python
    from math import lcm
    from sympy import divisors
    def A229964(n): return sum(1 for d in divisors(n,generator=True) for e in range(d+1,n) if 1Chai Wah Wu, Aug 09 2024
  • Sage
    def A229964(n) : return sum(sum(dprob(q1, n) * dprob(q2, n) == dprob(lcm(q1,q2), n) for q2 in range(q1+1, n)) for q1 in n.divisors() if q1 not in [1,n])
    def dprob(q, n) : return (n // q)/n