This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229972 #33 Jul 07 2022 06:42:29 %S A229972 1,8,16,24,27,30,40,42,54,56,64,66,70,78,81,88,102,104,105,110,114, %T A229972 125,128,130,135,136,138,152,154,165,170,174,182,184,186,189,190,192, %U A229972 195,216,222,230,231,232,238,240,246,248,250,255,258,266,273,282,285 %N A229972 Nonprime numbers whose product of proper divisors is a perfect cube. %C A229972 A nonprime number m is a term if and only if m is a cube or the number of divisors of m is of the form 3k+2. - _Chai Wah Wu_, Mar 09 2016 %H A229972 Chai Wah Wu, <a href="/A229972/b229972.txt">Table of n, a(n) for n = 1..10000</a> %e A229972 The set of proper divisors of 8 is {1,2,4} and 1*2*4 = 2^3 so 8 is in the sequence. %t A229972 Select[Range[343],!PrimeQ[#]&&IntegerQ[(Apply[Times,Divisors[#]]/#)^(1/3)]&] (* _Farideh Firoozbakht_ Oct 10 2013 *) %t A229972 Select[Range[300],!PrimeQ[#]&&IntegerQ[Surd[Times@@Most[Divisors[ #]],3]]&] (* _Harvey P. Dale_, Oct 24 2017 *) %t A229972 m = 7; Union[Range[m]^3, Select[Range[m^3], !PrimeQ[#] && Mod[DivisorSigma[0, #], 3] == 2 &]] (* _Amiram Eldar_, Jul 07 2022 *) %o A229972 (PARI) for(n=1,10^3,d=divisors(n);p=prod(i=1,#d-1,d[i]);if(p!=1&&ispower(p,3),print1(n,", "))) %o A229972 (Python) %o A229972 from gmpy2 import iroot %o A229972 from sympy import divisor_count, isprime %o A229972 A229972_list = [i for i in range(1,10**3) if not isprime(i) and (iroot(i,3)[1] or divisor_count(i) % 3 == 2)] # _Chai Wah Wu_, Mar 10 2016 %Y A229972 Cf. A007956. %Y A229972 Union of A000578 and (intersection of A002808 and A211338). %K A229972 nonn,easy %O A229972 1,2 %A A229972 _Derek Orr_, Oct 04 2013 %E A229972 Corrected and edited by _Farideh Firoozbakht_ Oct 10 2013