cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229974 Number of ways to write n = x + y + z (x, y, z > 0) with the six numbers 2*x-1, 2*x+1, 2*x*y-1, 2*x*y+1, 2*x*y*z-1, 2*x*y*z+1 all prime.

Original entry on oeis.org

0, 0, 0, 1, 1, 4, 2, 1, 2, 4, 5, 3, 3, 8, 1, 9, 4, 6, 3, 8, 16, 8, 4, 8, 7, 3, 10, 7, 3, 14, 4, 6, 8, 13, 12, 14, 6, 8, 13, 7, 13, 15, 13, 9, 9, 10, 7, 13, 14, 7, 16, 15, 12, 8, 16, 31, 11, 6, 16, 13, 16, 15, 26, 8, 10, 17, 10, 12, 11, 17, 9, 9, 13, 18, 17, 23, 14, 10, 7, 13, 29, 13, 18, 14, 9, 19, 21, 14, 19, 14, 25, 11, 14, 18, 13, 21, 15, 26, 14, 8
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 05 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 3. Moreover, any integer n > 3 can be written as x + y + z with x among 2, 3, 6 such that {2*x*y-1, 2*x*y+1} and {2*x*y*z-1, 2*x*y*z+1} are twin prime pairs.
(ii) Each integer n > 11 can be written as x + y + z (x, y, z > 0) with x-1, x+1, x*y-1, x*y+1, x*y*z-1, x*y*z+1 all prime, moreover we may require that x is among 4, 6, 12.
(iii) Any integer n > 3 not equal to 10 can be written as x + y + z (x, y, z > 0) such that the three numbers 2*x-1, 2*x*y-1 and 2*x*y*z-1 are Sophie Germain primes, moreover we may require that x is among 2, 3, 6.
Note that part (i) or (ii) of the above conjecture implies the twin prime conjecture, while part (iii) implies that there are infinitely many Sophie Germain primes.
See also the comments of A229969 for other similar conjectures.

Examples

			a(4) = 1 since 4 = 2+1+1 with 2*2-1 and 2*2+1 both prime.
a(5) = 1 since 5 = 3+1+1 with 2*3-1 and 2*3+1 both prime.
a(15) = 1 since 15 = 6+5+4 with 2*6-1, 2*6+1, 2*6*5-1, 2*6*5+1, 2*6*5*4-1, 2*6*5*4+1 all prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[2i-1]&&PrimeQ[2i+1]&&PrimeQ[2*i*j-1]&&PrimeQ[2i*j+1]&&PrimeQ[2i*j*(n-i-j)-1]&&PrimeQ[2i*j*(n-i-j)+1],1,0],{i,1,n-2},{j,1,n-1-i}]
    Table[a[n],{n,1,100}]