cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229979 Numerators of interleaved A063524(n) and A002427(n)/A006955(n).

This page as a plain text file.
%I A229979 #23 Dec 09 2013 09:32:54
%S A229979 0,1,1,1,0,-1,0,1,0,-3,0,5,0,-691,0,35,0,-3617,0,43867,0,-1222277,0,
%T A229979 854513,0,-1181820455,0,76977927,0,-23749461029,0,8615841276005,0,
%U A229979 -84802531453387,0,90219075042845,0
%N A229979 Numerators of interleaved A063524(n) and A002427(n)/A006955(n).
%C A229979 Numerators of Br(n) = 0, 1, 1, 1/2, 0, -1/6, 0, 1/6, 0, -3/10, 0, 5/6, 0, -691/210,... complementary Bernoulli numbers.
%C A229979 A164555(n)/A027642(n) is an autosequence of second kind. Its inverse binomial transform is the signed sequence and its main diagonal is the double of the first upper diagonal.
%C A229979 Br(n) is an autosequence of first kind. Its inverse binomial transform is the signed sequence and its main diagonal is A000004=0's.
%C A229979 Br(n) difference table:
%C A229979 0,       1,    1,  1/2,    0, -1/6,...
%C A229979 1,       0, -1/2, -1/2, -1/6,  1/6,...    =A140351(n)/A140219(n)
%C A229979 -1,   -1/2,    0,  1/3,  1/3,    0,...
%C A229979 1/2,   1/2,  1/3,    0, -1/3, -1/3,...
%C A229979 0,    -1/6, -1/3, -1/3,    0, 8/15,...
%C A229979 -1/6, -1/6,    0,  1/3, 8/15,    0,... etc.
%F A229979 a(2n)=A063524(n). a(2n+1)=A002427(n).
%F A229979 a(n) = numerators of n * b(n) with b(n)=0 followed by A164555(n)/A027642(n) = 0, 1, 1/2, 1/6, 0,... in A165142(n).
%F A229979 a(n+1) = numerators of Br(n+1) = Br(n) + A140351(n)/A140219(n), a(0)=Br(0)=0.
%t A229979 a[0] = 0; a[1] = a[2] = 1; a[n_] := 2*n*BernoulliB[n-1] // Numerator; Table[a[n], {n, 0, 36}] (* _Jean-François Alcover_, Nov 25 2013 *)
%Y A229979 Cf. A050925: a similar sequence, because 2*(n+1)*B(n) and (n+1)*B(n) have the same numerator.
%K A229979 sign,frac
%O A229979 0,10
%A A229979 _Paul Curtz_, Oct 05 2013
%E A229979 Cross-ref. to A050925 by _Jean-François Alcover_, Dec 09 2013